×

Entropy on normed semigroups (towards a unifying approach to entropy). (English) Zbl 1429.16002

Summary: We present a unifying approach to the study of entropies in mathematics, such as measure entropy, various forms of topological entropy, several notions of algebraic entropy, and two forms of set-theoretic entropy. We take into account only discrete dynamical systems, that is, pairs \((X,\phi)\), where \(X\) is the underlying space (e.g., a probability space, a compact topological space, a group, a set) and \(\phi:X\to X\) is a transformation of \(X\) (e.g., a measure preserving transformation, a continuous selfmap, a group homomorphism, a selfmap). We see entropies as functions \(h:\mathfrak X\to \mathbb R_+\), associating to each flow \((X,\phi)\) of a category \(\mathfrak X\) either a non-negative real number or \(\infty\). First, we introduce the notion of semigroup entropy \(h_{\mathfrak S}:{\mathfrak S}\to\mathbb R_+\), which is a numerical invariant attached to endomorphisms of the category \({\mathfrak S}\) of normed semigroups. Then, for a functor \(F:\mathfrak X\to{\mathfrak S}\) from any specific category \(\mathfrak X\) to \({\mathfrak S}\), we define the functorial entropy \(\boldsymbol{h}_F:\mathfrak X\to\mathbb R_+\) as the composition \(h_{\mathfrak S}\circ F\), that is, \(\boldsymbol{h}_F(\phi) = h_{\mathfrak S}(F\phi)\) for any endomorphism \(\phi: X \to X\) in \(\mathfrak X\). Clearly, \(\boldsymbol{h}_F\) inherits many of the properties of \(h_{\mathfrak S}\), depending also on the functor \(F\). Motivated by this aspect, we study in detail the properties of \(h_{\mathfrak S}\). Such a general scheme, using elementary category theory, permits one to obtain many relevant known entropies as functorial entropies \(\boldsymbol{h}_F\), for appropriately chosen categories \(\mathfrak X\) and functors \(F:\mathfrak X\to{\mathfrak S}\). All of the above mentioned entropies are functorial. Furthermore, we exploit our scheme to elaborate a common approach to establishing the properties shared by those entropies that we find as functorial entropies, pointing out their common nature. We give also a detailed description of the limits of our approach, namely entropies which cannot be covered. Finally, we discuss and deeply analyze the relations between pairs of entropies through the looking glass of our unifying approach. To this end we first formalize the notion of Bridge Theorem between two entropies \(h_1:\mathfrak X_1\to \mathbb R_+\) and \(h_2:\mathfrak X_2\to \mathbb R_+\) with respect to a functor \(\varepsilon:\mathfrak X_1\to\mathfrak X_2\), taking inspiration from the known relation between the topological and the algebraic entropy via the Pontryagin duality functor. Then, for pairs of functorial entropies we use the above scheme to introduce the notion and the related scheme of strong bridge theorem. It allows us to shelter various relations between pairs of entropies under the same umbrella (e.g., the above mentioned connection of the topological and the algebraic entropy, as well as their relation to the set-theoretic entropy).

MSC:

16B50 Category-theoretic methods and results in associative algebras (except as in 16D90)
20F65 Geometric group theory
20K30 Automorphisms, homomorphisms, endomorphisms, etc. for abelian groups
20M15 Mappings of semigroups
22D05 General properties and structure of locally compact groups
22D35 Duality theorems for locally compact groups
22D40 Ergodic theory on groups
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. · Zbl 0127.13102
[2] M. Akhavin, D. Dikranjan, A. Giordano Bruno, A. Hosseini and F. Ayatollah Zadeh Shirazi, Algebraic entropy of shift endomorphisms on abelian groups, Quaest. Math. 32 (2009), 529-550. · Zbl 1194.37015
[3] D. Alcaraz, D. Dikranjan and M. Sanchis, Bowen’s entropy for endomorphisms of totally bounded abelian groups, in: Descriptive Topology and Functional Analysis, Springer Proc. Math. Statist. 80, Springer, Cham, 2014, 143-162. · Zbl 1317.22001
[4] F. Ayatollah Zadeh Shirazi and D. Dikranjan, Set-theoretical entropy: a tool to compute topological entropy, in: Proc. Int. Conf. on Topology and Its Applications (ICTA 2011, Islamabad), Cambridge Sci. Publ., Cambridge, 2012, 11-32. · Zbl 1301.54037
[5] H. Bass, The degree of polynomial growth of finitely generated nilpotent groups, Proc. London Math. Soc. 25 (1972), 603-614. · Zbl 0259.20045
[6] M. P. Bellon and C. M. Viallet, Algebraic entropy, Comm. Math. Phys. 204 (1999), 425-437. · Zbl 0987.37007
[7] F. Berlai, D. Dikranjan and A. Giordano Bruno, Scale function vs topological entropy, Topology Appl. 160 (2013), 2314-2334. · Zbl 1315.37014
[8] A. Bi´s, Entropies of a semigroup of maps, Discrete Contin. Dynam. Systems 11 (2004), 639-648. · Zbl 1063.37003
[9] A. Bi´s, D. Dikranjan, A. Giordano Bruno and L. Stoyanov, Topological entropy, upper capacity and fractal dimensions of finitely generated semigroup actions, submitted.
[10] A. Bi´s, D. Dikranjan, A. Giordano Bruno and L. Stoyanov, Receptive metric entropy for group and semigroup actions, work in progress.
[11] F. Blanchard and Y. Lacroix, Zero entropy factors of topological flows, Proc. Amer. Math. Soc. 119 (1993), 985-992. · Zbl 0787.54040
[12] L. Bowen, Measure conjugacy invariants for actions of countable sofic groups, J. Amer. Math. Soc. 23 (2010), 217-245. · Zbl 1201.37005
[13] L. Bowen, Sofic entropy and amenable groups, Ergodic Theory Dynam. Systems 32 (2012), 427-466. · Zbl 1257.37007
[14] R. Bowen, Entropy and the fundamental group, in: The Structure of Attractors in Dynamical Systems (Fargo, ND, 1977), Lecture Notes in Math. 668, Springer, Berlin, 1978, 21-29. · Zbl 0389.58010
[15] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414; Erratum, ibid. 181 (1973), 509-510. · Zbl 0212.29201
[16] G. C. L. Br¨ummer, D. Dikranjan and H.-P. K¨unzi, Topological entropy and its extension to quasi uniform spaces, preprint.
[17] L. Busetti, Entropia per semigruppi normati, Master’s thesis, Univ. of Udine, 2011.
[19] I. Castellano and A. Giordano Bruno, Algebraic entropy in locally linearly compact vector spaces, in: Rings, Polynomials, and Modules, Springer, Cham, 2017, 103-127. · Zbl 1391.37005
[20] I. Castellano and A. Giordano Bruno, Topological entropy for locally linearly compact vector spaces, Topology Appl. 252 (2019), 112-144. · Zbl 1422.22009
[21] T. Ceccherini-Silberstein, M. Coornaert and F. Krieger, An analogue of Fekete’s lemma for subadditive functions on cancellative amenable semigroups, J. Anal. Math. 124 (2014), 59-81. · Zbl 1308.43002
[22] N. Chung and A. Thom, Some remarks on the entropy for algebraic actions of amenable groups, Trans. Amer. Math. Soc. 367 (2015), 8579-8595. · Zbl 1357.37027
[23] J.-P. Conze, Entropie d’un groupe ab´elien de transformations, Z. Wahrsch. Verw. Gebiete 25 (1972), 11-30. · Zbl 0261.28015
[24] A. L. S. Corner, On endomorphism rings of primary abelian groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), 277-296. · Zbl 0205.32506
[25] U. Dardano, D. Dikranjan and S. Rinauro, Inertial properties in groups, Int. J. Group Theory 7 (2018), no. 3, 17-62. · Zbl 1442.20023
[26] U. Dardano, D. Dikranjan and L. Salce, Uniformly inert subgroups, submitted. · Zbl 1445.20046
[27] U. Dardano and S. Rinauro, On soluble groups whose subnormal subgroups are inert, Int. J. Group Theory 4 (2015), 17-24. · Zbl 1456.20018
[28] C. Deninger, Fuglede-Kadison determinants and entropy for actions of discrete amenable groups, J. Amer. Math. Soc. 19 (2006), 737-758. · Zbl 1104.22010
[29] D. Dikranjan, A uniform approach to chaos, in: Algebra Meets Topology: Advances and Applications 19-23 July 2010 Barcelona (Spain), http://atlas-conferences.com/cgi-bin/ abstract/cbah-54.
[30] D. Dikranjan, A. Fornasiero and A. Giordano Bruno, Algebraic entropy for amenable semigroup actions, submitted. · Zbl 1453.20074
[31] D. Dikranjan and A. Giordano Bruno, The Pinsker subgroup of an algebraic flow, J. Pure Appl. Algebra 216 (2012), 364-376. · Zbl 1247.37014
[32] D. Dikranjan and A. Giordano Bruno, Limit free computation of entropy, Rend. Istit. Mat. Univ. Trieste 44 (2012), 297-312. · Zbl 1277.37031
[33] D. Dikranjan and A. Giordano Bruno, Topological entropy and algebraic entropy for group endomorphisms, in: Proc. Int. Conf. on Topology and Its Applications (ICTA 2011, Islamabad), Cambridge Sci. Publ., Cambridge, 2012, 133-214. · Zbl 1300.54002
[34] D. Dikranjan and A. Giordano Bruno, The connection between topological and algebraic entropy, Topology Appl. 159 (2012), 2980-2989. · Zbl 1256.54061
[35] D. Dikranjan and A. Giordano Bruno, Entropy in a category, Appl. Categ. Structures 21 (2013), 67-101. · Zbl 1337.18005
[36] D. Dikranjan and A. Giordano Bruno, Discrete dynamical systems in group theory, Note Mat. 33 (2013), 1-48. · Zbl 1280.37023
[37] D. Dikranjan and A. Giordano Bruno, The Bridge Theorem for totally disconnected LCA groups, Topology Appl. 169 (2014), 21-32. · Zbl 1322.37007
[38] D. Dikranjan and A. Giordano Bruno, Entropy on abelian groups, Adv. Math. 298 (2016), 612-653. · Zbl 1368.37015
[39] D. Dikranjan, A. Giordano Bruno and L. Salce, Adjoint algebraic entropy, J. Algebra 324 (2010), 442-463. · Zbl 1201.20053
[40] D. Dikranjan, A. Giordano Bruno, L. Salce and S. Virili, Fully inert subgroups, J. Group Theory 16 (2013), 915-939. · Zbl 1292.20062
[41] D. Dikranjan, A. Giordano Bruno, L. Salce and S. Virili, Intrinsic algebraic entropy, J. Pure Appl. Algebra 219 (2015), 2933-2961. · Zbl 1355.20041
[42] D. Dikranjan, A. Giordano Bruno and S. Virili, Strings of group endomorphisms, J. Algebra Appl. 9 (2010), 933-958. · Zbl 1225.37010
[43] D. Dikranjan, B. Goldsmith, L. Salce and P. Zanardo, Algebraic entropy for abelian groups, Trans. Amer. Math. Soc. 361 (2009), 3401-3434. · Zbl 1176.20057
[44] D. Dikranjan, K. Gong and P. Zanardo, Endomorphisms of abelian groups with small algebraic entropy, Linear Algebra Appl. 439 (2013), 1894-1904. · Zbl 1320.37013
[45] D. Dikranjan and H.-P. A. K¨unzi, Uniform entropy vs topological entropy, Topol. Algebra Appl. 3 (2015), 104-114.
[46] D. Dikranjan, L. Salce and P. Zanardo, Fully inert subgroups of free abelian groups, Period. Math. Hungar. 69 (2014), 69-78. · Zbl 1322.20046
[47] D. Dikranjan and M. Sanchis, Dimension and entropy in compact topological groups, J. Math. Anal. Appl. 476 (2019), 337-366. · Zbl 1459.22001
[48] D. Dikranjan, M. Sanchis and S. Virili, New and old facts about entropy in uniform spaces and topological groups, Topology Appl. 159 (2012), 1916-1942. · Zbl 1242.54005
[49] E. I. Dinaburg, The relation between topological entropy and metric entropy, Soviet Math. Dokl. 11 (1970), 13-16. · Zbl 0196.26401
[50] R. Ellis, Universal minimal sets, Proc. Amer. Math. Soc. 11 (1960), 540-543. · Zbl 0102.38002
[51] R. Engelking, General Topology, Heldermann, Berlin, 1989. · Zbl 0684.54001
[52] G. Everest and T. Ward, Heights of Polynomials and Entropy in Algebraic Dynamics, Universitext, Springer London, London, 1999. · Zbl 0919.11064
[53] M. Fekete, ¨Uber die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), 228-249. · JFM 49.0047.01
[54] E. Ghys, R. Langevin and P. Walczak, Entropie g´eom´etrique des feuilletages, Acta Math. 160 (1988), 105-142. · Zbl 0666.57021
[55] A. Giordano Bruno, Algebraic entropy of shift endomorphisms on products, Comm. Algebra 38 (2010), 4155-4174. · Zbl 1278.20073
[56] A. Giordano Bruno, Adjoint entropy vs topological entropy, Topology Appl. 159 (2012), 2404-2419. · Zbl 1314.37013
[57] A. Giordano Bruno, Entropy for automorphisms of totally disconnected locally compact groups, Topology Proc. 45 (2015), 175-187. · Zbl 1351.37065
[58] A. Giordano Bruno and L. Salce, A soft introduction to algebraic entropy, Arab. J. Math. 1 (2012), 69-87. · Zbl 1282.15006
[59] A. Giordano Bruno, M. Shlossberg and D. Toller, Algebraic entropy on strongly compactly covered groups, Topology Appl. 263 (2019), 117-140. · Zbl 1429.37006
[60] A. Giordano Bruno and P. Spiga, Some properties of the growth and of the algebraic entropy of group endomorphisms, J. Group Theory 20 (2017), 763-774. · Zbl 1401.20041
[61] A. Giordano Bruno and P. Spiga, Milnor-Wolf Theorem for the growth of endomorphisms of locally virtually soluble groups, submitted. · Zbl 1480.20108
[62] A. Giordano Bruno and S. Virili, String numbers of abelian groups, J. Algebra Appl. 11 (2012), 125-161. · Zbl 1268.20060
[63] A. Giordano Bruno and S. Virili, Algebraic Yuzvinski formula, J. Algebra 423 (2015), 114-147. · Zbl 1351.37066
[64] A. Giordano Bruno and S. Virili, About the algebraic Yuzvinski formula, Topol. Algebra Appl. 3 (2015), 86-103. · Zbl 1351.37066
[65] A. Giordano Bruno and S. Virili, Topological entropy in totally disconnected locally compact groups, Ergodic Theory Dynam. Systems 37 (2017), 2163-2186. · Zbl 1380.37032
[66] B. Goldsmith and K. Gong, On adjoint entropy of abelian groups, Comm. Algebra 40 (2012), 972-987. · Zbl 1247.20065
[67] B. Goldsmith and L. Salce, Algebraic entropies for Abelian groups with applications to the structure of their endomorphism rings: a survey, in: Groups, Modules, and Model Theory—Surveys and Recent Developments, Springer, Cham, 2017, 135-174. · Zbl 1436.20108
[68] B. Goldsmith, L. Salce and P. Zanardo, Fully inert subgroups of Abelian p-groups, J. Algebra 419 (2014), 332-349. · Zbl 1305.20063
[69] T. N. T. Goodman, Relating topological entropy and measure entropy, Bull. London Math. Soc. 3 (1971), 176-180. · Zbl 0219.54037
[70] L. W. Goodwyn, Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc. 23 (1969), 679-688. · Zbl 0186.09804
[71] L. W. Goodwyn, The product theorem for topological entropy, Trans. Amer. Math. Soc. 158 (1971), 445-452. · Zbl 0219.54036
[72] P. Halmos, On automorphisms of compact groups, Bull. Amer. Math. Soc. 49 (1943), 619-624. · Zbl 0061.04403
[73] P. de la Harpe, Uniform growth in groups of exponential growth, Geom. Dedicata 95 (2002), 1-17. · Zbl 1025.20027
[74] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Springer, Berlin, 1963. · Zbl 0115.10603
[75] J. E. Hofer, Topological entropy for noncompact spaces, Michigan Math. J. 21 (1974), 235-242. · Zbl 0287.54044
[76] K. H. Hofmann and L. N. Stoyanov, Topological entropy of group and semigroup actions, Adv. Math. 115 (1995), 54-98. · Zbl 0865.22003
[77] B. M. Hood, Topological entropy and uniform spaces, J. London Math. Soc. 8 (1974), 633-641. · Zbl 0291.54051
[78] D. Kerr and H. Li, Entropy and the variational principle for actions of sofic groups, Invent. Math. 186 (2011), 501-558. · Zbl 1417.37041
[79] J. C. Kieffer, A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space, Ann. Probab. 3 (1975), 1031-1037. · Zbl 0322.60032
[80] A. A. Kirillov, Dynamical systems, factors and group representations, Russian Math. Surveys 22 (1967), 67-80. · Zbl 0169.46602
[81] A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms of Lebesgue spaces, Dokl. Akad. Nauk SSSR 119 (1958), 861-864 (in Russian). · Zbl 0083.10602
[82] N. Kryloff et N. Bogoliouboff [N. M. Krylov et N. N. Bogolyubov], La th´eorie g´en´erale de la mesure dans son application ‘a l’´etude de syst‘emes dynamiques de la m´ecanique non lin´eaire, Ann. of Math. 38 (1937), 65-113. · JFM 63.1002.01
[83] S. Lefschetz, Algebraic Topology, Amer. Math. Soc. Colloq. Publ. 27, Amer. Math. Soc., New York, 1942. · Zbl 0061.39302
[84] H. Li, Compact group automorphisms, addition formulas and Fuglede-Kadison determinants, Ann. of Math. (2) 176 (2012), 303-347. · Zbl 1250.22006
[85] H. Li and B. Liang, Mean dimension, mean rank, and von Neumann-L¨uck rank, J. Reine Angew. Math. 739 (2018), 207-240. · Zbl 1392.37018
[86] D. Lind, K. Schmidt and T. Ward, Mahler measure and entropy for commuting automorphisms of compact groups, Invent. Math. 101 (1990), 593-629. · Zbl 0774.22002
[87] D. A. Lind and T. Ward, Automorphisms of solenoids and p-adic entropy, Ergodic Theory Dynam. Systems 8 (1988), 411-419. · Zbl 0634.22005
[88] M. Majidi-Zolbanin, N. Miasnikov and L. Szpiro, Entropy and flatness in local algebraic dynamics, Publ. Mat. 57 (2013), 509-544. · Zbl 1302.37059
[89] J. Moulin Ollagnier, Ergodic Theory and Statistical Mechanics, Lecture Notes in Math. 1115, Springer, Berlin, 1985. · Zbl 0558.28010
[90] D. G. Northcott and M. Reufel, A generalization of the concept of length, Quart. J. Math. Oxford Ser. (2) 16 (1965), 297-321. · Zbl 0129.02203
[91] D. S. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math. 48 (1987), 1-141. · Zbl 0637.28015
[92] J. Peters, Entropy on discrete abelian groups, Adv. Math. 33 (1979), 1-13. · Zbl 0421.28019
[93] J. Peters, Entropy of automorphisms on L.C.A. groups, Pacific J. Math. 96 (1981), 475-488. · Zbl 0478.28010
[94] L. S. Pontryagin, Topological Groups, Gordon and Breach, New York, 1966.
[95] L. Salce, Some results on the algebraic entropy, in: Groups and Model Theory, Contemp. Math. 576, Amer. Math. Soc., Providence, RI, 2012, 297-304. · Zbl 1268.16004
[96] L. Salce, P. V´amos and S. Virili, Length functions, multiplicities and algebraic entropy, Forum Math. 25 (2013), 255-282. · Zbl 1286.16002
[97] L. Salce and S. Virili, The addition theorem for algebraic entropies induced by non-discrete length functions, Forum Math. 28 (2016), 1143-1157. · Zbl 1362.16033
[98] L. Salce and S. Virili, Two new proofs concerning the intrinsic algebraic entropy, Comm. Algebra 46 (2018), 3939-3949. · Zbl 1429.20038
[99] L. Salce and P. Zanardo, Commutativity modulo small endomorphisms and endomorphisms of zero algebraic entropy, in: Models, Modules and Abelian Groups, de Gruyter, Berlin, 2008, 487-497. · Zbl 1200.20039
[100] L. Salce and P. Zanardo, A general notion of algebraic entropy and the rank-entropy, Forum Math. 21 (2009), 579-599. · Zbl 1203.20048
[101] L. Salce and P. Zanardo, Abelian groups of zero adjoint entropy, Colloq. Math. 121 (2010), 45-62. · Zbl 1239.20071
[102] J. H. Silverman, Dynamical degree, arithmetic entropy, and canonical heights for dominant rational self-maps of projective space, Ergodic Theory Dynam. Systems 34 (2014), 647-678. · Zbl 1372.37093
[103] Ya. G. Sinai, On the concept of entropy of a dynamical system, Dokl. Akad. Nauk SSSR 124 (1959), 786-781 (in Russian).
[104] A. M. Stepin and A. T. Tagi-Zade, Variational characterization of topological pressure for amenable groups of transformations, Dokl. Akad. Nauk SSSR 254 (1980), 545-549 (in Russian). · Zbl 0481.28017
[105] L. N. Stoyanov, Uniqueness of topological entropy for endomorphisms on compact groups, Boll. Un. Mat. Ital. B (7) 1 (1987), 829-847. · Zbl 0648.22002
[106] P. V´amos, Additive functions and duality over Noetherian rings, Quart. J. Math. Oxford Ser. (2) 19 (1968), 43-55. · Zbl 0153.37101
[107] P. V´amos, Length functions on modules, Ph.D. thesis, Univ. of Sheffield, 1968.
[108] S. Virili, Algebraic i-entropies, Master’s thesis, Univ. of Padova, 2010.
[109] S. Virili, Entropy for endomorphisms of LCA groups, Topology Appl. 159 (2012), 2546-2556. · Zbl 1243.22007
[110] S. Virili, Algebraic and topological entropy of group actions, preprint. · Zbl 1450.16019
[111] S. Virili, Algebraic entropy of amenable group actions, Math. Z. 291 (2019), 1389-1417. · Zbl 1450.16019
[112] P. Walters, An Introduction to Ergodic Theory, Grad. Texts in Math. 79, Springer, New York, 1982. · Zbl 0475.28009
[113] B. Weiss, Entropy and actions of sofic groups, Discrete Contin. Dynam. Systems Ser. B 20 (2015), 3375-3383. · Zbl 1343.37003
[114] M. D. Weiss, Algebraic and other entropies of group endomorphisms, Math. Systems Theory 8 (1974), 243-248. · Zbl 0298.28014
[115] G. A. Willis, The structure of totally disconnected, locally compact groups, Math. Ann. 300 (1994), 341-363. · Zbl 0811.22004
[116] G. A. Willis, Further properties of the scale function on a totally disconnected group, J. Algebra 237 (2001), 142-164. · Zbl 0982.22001
[117] S. A. Yuzvinski˘ı, Metric properties of endomorphisms of compact groups, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 1295-1328 (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 66 (1968), 63-98. · Zbl 0206.03602
[118] S. A. Yuzvinski˘ı, Calculation of the entropy of a group endomorphism, Sibirsk. Mat. Zh. 8 (1967), 230-239 (in Russian).
[119] P. Zanardo, Algebraic entropy of endomorphisms over local one-dimensional domains, J. Algebra Appl. 8 (2009), 759-777. · Zbl 1182.13016
[120] P. Zanardo, Multiplicative invariants and length functions over valuation domains, J. Commut. Algebra 3 (2011), 561-587. · Zbl 1250.13016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.