×

Numerical investigation of semi-confined turbulent slot jet impingement on a concave surface using an Al\(_2\)O\(_3\)-water nanofluid. (English) Zbl 1446.76007

Summary: This paper presents and discusses results of a computational study of the flow field and heat transfer characteristics for a turbulent slot jet of an Al\(_2\)O\(_3\)-water nanofluid impinging normally on to a semi-circular concave surface. A wide range of various flow and geometrical parameters, including the nanoparticle volume fraction \((\Phi)\), jet Reynolds number (Re), and jet-to-target distance (h/B) have been considered. The results are presented in terms of the streamline patterns, local and average Nusselt numbers, stagnation Nusselt number, shear stress distribution, and pumping power. The results show a significant improvement of heat transfer rate due to the presence of the nanoparticles in water. Moreover, for ratios of h/B greater than three, the maximum average heat transfer rate from the concave surface occurs at \(\mathrm{h/B}=5\). An increase in the jet Reynolds number and nanoparticle concentration leads to an improved cooling performance of jet impingement on the concave surface. However, the elevated viscosity of the nanofluid has the adverse effect of increasing the pumping power needed per unit of heat transferred.

MSC:

76-10 Mathematical modeling or simulation for problems pertaining to fluid mechanics
76F65 Direct numerical and large eddy simulation of turbulence
76T20 Suspensions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Martin, H., Heat and mass transfer between impinging gas jets and solid surfaces, Adv. Heat Transf., 13, 1-60 (1977)
[2] Sharif, M. A.R.; Mothe, K. K., Evaluation of turbulence models in the prediction of heat transfer due to slot jet impingement on plane and concave surfaces, Numer. Heat Transf., Part B: Fundam., 55, 273-294 (2009)
[3] Sharif, M. A.R.; Mothe, K. K., Parametric study of turbulent slot-jet impingement heat transfer from concave cylindrical surfaces, Int. J. Therm. Sci., 49, 428-442 (2010)
[4] Wang, X.-Q.; Mujumdar, A. S., A review on nanofluids-part II: experiments and applications, Braz. J. Chem. Eng., 25, 631-648 (2008)
[5] Masoumi, N.; Sohrabi, N.; Behzadmehr, A., A new model for calculating the effective viscosity of nanofluids, J. Phys. D: Appl. Phys., 42, 055501 (2009)
[6] Quaresma, J. N.N.; Macêdo, E. N.; da Fonseca, H. M.; Orlande, H. R.B.; Cotta, R. M., An Analysis of Heat Conduction Models for Nanofluids, Heat Transf. Eng., 31, 1125-1136 (2010)
[7] Wang, B.-X.; Zhou, L.-P.; Peng, X.-F., A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, Int. J. Heat Mass Transf., 46, 2665-2672 (2003) · Zbl 1032.76703
[8] Xuan, Y.; Li, Q., Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow, 21, 58-64 (2000)
[9] Das, S. K.; Putra, N.; Thiesen, P.; Roetzel, W., Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transf., 125, 567-574 (2003)
[10] Putra, N.; Roetzel, W.; Das, S., Natural convection of nano-fluids, Heat Mass Transf., 39, 775-784 (2003)
[11] Nguyen, C. T.; Galanis, N.; Polidori, G.; Fohanno, S.; Popa, C. V.; Le Bechec, A., An experimental study of a confined and submerged impinging jet heat transfer using Al2O3-water nanofluid, Int. J. Therm. Sci., 48, 401-411 (2009)
[12] Gherasim, I.; Roy, G.; Nguyen, C. T.; Vo-Ngoc, D., Heat transfer enhancement and pumping power in confined radial flows using nanoparticle suspensions (nanofluids), Int. J. Therm. Sci., 50, 369-377 (2011)
[13] Manca, O.; Mesolella, P.; Nardini, S.; Ricci, D., Numerical study of a confined slot impinging jet with nanofluids, Nanoscale Res. Lett., 6, 1-16 (2011)
[14] Choi, M.; Yoo, H. S.; Yang, G.; Lee, J. S.; Sohn, D. K., Measurements of impinging jet flow and heat transfer on a semi-circular concave surface, Int. J. Heat Mass Transf., 43, 1811-1822 (2000)
[15] Fregeau, M.; Saeed, F.; Paraschivoiu, I., Numerical heat transfer correlation for array of hot-air jets impinging on 3-dimensional concave surface, J. Aircr., 42, 665-670 (2005)
[16] Yang, Y.-T.; Wei, T.-C.; Wang, Y.-H., Numerical study of turbulent slot jet impingement cooling on a semi-circular concave surface, Int. J. Heat Mass Transf., 54, 482-489 (2011) · Zbl 1207.80019
[17] Ahmadi, H.; Rajabi-Zargarabadi, M.; Mujumdar, A. S.; Mohammadpour, J., Numerical modeling of a turbulent semi-confined slot jet impinging on a concave surface, Therm. Sci., 19, 129-140 (2015)
[18] Launder, B. E.; Sharma, B. I., Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc, Lett. Heat Mass Transf., 1, 131-137 (1974)
[19] C.R. Yap, Turbulent Heat and Momentum Transfer in Recirculating and Impinging Flows, Ph.D. Thesis, University of Manchester, Institute of Science Technology, Manchester, UK, 1987.; C.R. Yap, Turbulent Heat and Momentum Transfer in Recirculating and Impinging Flows, Ph.D. Thesis, University of Manchester, Institute of Science Technology, Manchester, UK, 1987.
[20] Craft, T.; Graham, L.; Launder, B. E., Impinging jet studies for turbulence model assessment—II. An examination of the performance of four turbulence models, Int. J. Heat Mass Transf., 36, 2685-2697 (1993)
[21] Hosseinalipour, S. M.; Mujumdar, A. S., Comparative evaluation of different turbulence models for confined impinging and opposing jet flows, Numer. Heat Transf., Part A: Appl., 28, 647-666 (1995)
[22] Wang, S. J.; Mujumdar, A. S., A comparative study of five low Reynolds number k-ε models for impingement heat transfer, Appl. Therm. Eng., 25, 31-44 (2005)
[23] Abid, R., Evaluation of two-equation turbulence models for predicting transitional flows, Int. J. Eng. Sci., 31, 831-840 (1993) · Zbl 0775.76062
[24] Lam, C.; Bremhorst, K., A modified form of the k-epsilon model for predicting wall turbulence, ASME Trans. J. Fluids Eng., 103, 456-460 (1981)
[25] Abe, K.; Kondoh, T.; Nagano, Y., A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows—I. Flow field calculations, Int. J. Heat Mass Transf., 37, 139-151 (1994) · Zbl 0800.76181
[26] Chang, K.; Hsieh, W.; Chen, C., A modified low-Reynolds-number turbulence model applicable to recirculating flow in pipe expansion, J. Fluids Eng., 117, 417-423 (1995)
[27] Hsieh, W.; Chang, K., Calculation of wall heat transfer in pipeexpansion turbulent flows, Int. J. Heat Mass Transf., 39, 3813-3822 (1996) · Zbl 0968.76549
[28] Jones, W.; Launder, B., The prediction of laminarization with a two-equation model of turbulence, Int. J. Heat Mass Transf., 15, 301-314 (1972)
[29] Patel, V. C.; Rodi, W.; Scheuerer, G., Turbulence models for near-wall and low Reynolds number flows-a review, AIAA J., 23, 1308-1319 (1985)
[30] Daly, B. J.; Harlow, F. H., Transport Equations in Turbulence, Phys. Fluids, 13, 2634-2649 (1970)
[31] Wang, X.-Q.; Mujumdar, A. S., A review on nanofluids-part I: theoretical and numerical investigations, Braz. J. Chem. Eng., 25, 613-630 (2008)
[32] Maïga, S. E.B.; Nguyen, C. T.; Galanis, N.; Roy, G., Heat transfer behaviours of nanofluids in a uniformly heated tube, Superlattices Microstruct., 35, 543-557 (2004)
[33] Roy, G.; Nguyen, C. T.; Lajoie, P.-R., Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids, Superlattices Microstruct., 35, 497-511 (2004)
[34] Shahi, M.; Mahmoudi, A. H.; Talebi, F., Numerical study of mixed convective cooling in a square cavity ventilated and partially heated from the below utilizing nanofluid, Int. Commun. Heat Mass Transf., 37, 201-213 (2010)
[35] Talebi, F.; Mahmoudi, A. H.; Shahi, M., Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid, Int. Commun. Heat Mass Transf., 37, 79-90 (2010)
[36] Chon, C. H.; Kihm, K. D.; Lee, S. P.; Choi, S. U.S., Empirical correlation finding the role of temperature and particle size for nanofluid \((Al_2 O_3)\) thermal conductivity enhancement, Appl. Phys. Lett., 87 (2005), 153107-153107-153103
[37] Patankar, S. V., Numerical Heat Transfer and Fluid Flow (1980), McGraw-Hill, New York · Zbl 0521.76003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.