×

Minimal foliations for the high-dimensional Frenkel-Kontorova model. (English) Zbl 1524.37075

Summary: For the high-dimensional Frenkel-Kontorova (FK) model on lattices, we study the existence of minimal foliations by depinning force. We introduce the tilted gradient flow and define the depinning force as the critical value of the external force under which the average velocity of the system is zero. Then, the depinning force can be used as the criterion for the existence of minimal foliations for the FK model on a \(\mathbb{Z}^d\) lattice for \(d > 1\).

MSC:

37L60 Lattice dynamics and infinite-dimensional dissipative dynamical systems
82C22 Interacting particle systems in time-dependent statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aubry, S.; Le Daeron, P. Y., The discrete Frenkel-Kontorova model and its extensions, Phys D, 8, 381-422 (1983) · Zbl 1237.37059 · doi:10.1016/0167-2789(83)90233-6
[2] Baesens, C.; MacKay, R. S., Gradient dynamics of tilted Frenkel-Kontorova models, Nonlinearity, 11, 949-964 (1998) · Zbl 0906.58037 · doi:10.1088/0951-7715/11/4/011
[3] Bangert, V., Mather sets for twist maps and geodesics on tori, Dynamics Reported, 1, 1-56 (1988) · Zbl 0664.53021 · doi:10.1007/978-3-322-96656-8_1
[4] Bangert, V., On minimal laminations of the torus, Ann Inst H Poincaré Anal Non Linéaire, 6, 95-138 (1989) · Zbl 0678.58014 · doi:10.1016/s0294-1449(16)30328-6
[5] Blank, M. L., Metric properties of minimal solutions of discrete periodical variational problems, Nonlinearity, 2, 1-22 (1989) · Zbl 0676.49001 · doi:10.1088/0951-7715/2/1/001
[6] de la Llave, R.; Valdinoci, E., Ground states and critical points for generalized Frenkel-Kontorova models in ℤ^d, Nonlinearity, 20, 2409-2424 (2007) · Zbl 1206.82026 · doi:10.1088/0951-7715/20/10/008
[7] de la Llave, R.; Valdinoci, E., Ground states and critical points for Aubry-Mather theory in statistical mechanics, J Nonlinear Sci, 20, 153-218 (2010) · Zbl 1196.82095 · doi:10.1007/s00332-009-9055-0
[8] Golé, C., A new proof of the Aubry-Mather’s theorem, Math Z, 210, 441-448 (1992) · Zbl 0759.58039 · doi:10.1007/BF02571806
[9] Katok, A.; Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems (1995), New York: Cambridge University Press, New York · Zbl 0878.58020 · doi:10.1017/CBO9780511809187
[10] Knibbeler, V.; Mramor, B.; Rink, B., The laminations of a crystal near an anti-continuum limit, Nonlinearity, 27, 927-952 (2014) · Zbl 1315.37008 · doi:10.1088/0951-7715/27/5/927
[11] Koch, H.; de la Llave, R.; Radin, C., Aubry-Mather theory for functions on lattices, Discrete Contin Dyn Syst (Ser A), 3, 135-151 (1997) · Zbl 0948.37015 · doi:10.3934/dcds.1997.3.135
[12] Kolmogolov, A. N.; Fomin, S. V., Elements of the Theory of Functions and Functional Analysis (1999), New York: Dover Publications, New York
[13] Mather, J. N., Existence of quasi-periodic orbits for twist homeomorphisms of the annulus, Topology, 21, 457-467 (1982) · Zbl 0506.58032 · doi:10.1016/0040-9383(82)90023-4
[14] Mather, J. N., A criterion for the non-existence of invariant circles, Publ Math IHES, 63, 153-204 (1986) · Zbl 0603.58028 · doi:10.1007/BF02831625
[15] Mather, J. N., Modulus of continuity for Peierls’s barrier, Periodic Solutions of Hamiltonian Systems and Related Topics, 209, 177-202 (1987) · Zbl 0658.58013 · doi:10.1007/978-94-009-3933-2_18
[16] Miao, X. Q.; Qin, W. X.; Wang, Y. N., Secondary invariants of Birkhoff minimizers and heteroclinic orbits, J Differential Equations, 260, 1522-1557 (2016) · Zbl 1352.37132 · doi:10.1016/j.jde.2015.09.039
[17] Moser, J., Minimal solutions of variational problems on a torus, Ann Inst H Poincaré Anal Non Linéaire, 3, 229-272 (1986) · Zbl 0609.49029 · doi:10.1016/s0294-1449(16)30387-0
[18] Mramor, B.; Rink, B., Ghost circles in lattice Aubry-Mather theory, J Differential Equations, 252, 3163-3208 (2012) · Zbl 1253.37062 · doi:10.1016/j.jde.2011.11.023
[19] Mramor, B.; Rink, B., On the destruction of minimal foliations, Proc Lond Math Soc, 108, 704-737 (2014) · Zbl 1336.37053 · doi:10.1112/plms/pdt045
[20] Mramor, B.; Rink, B., A dichotomy theorem for minimizers of monotone recurrence relations, Ergodic Theory Dynam Systems, 35, 215-248 (2015) · Zbl 1321.37063 · doi:10.1017/etds.2013.47
[21] Mramor, B.; Rink, B., Continuity of the Peierls barrier and robustness of laminations, Ergodic Theory Dynam Systems, 35, 1263-1288 (2015) · Zbl 1364.37135 · doi:10.1017/etds.2013.101
[22] Mramor, B., Monotone Variational Recurrence Relations [D] (2012), Amsterdam: VU University Amsterdam, Amsterdam
[23] Qin, W. X.; Wang, Y. N., Invariant circles and depinning transition, Ergodic Theory Dynam Systems, 38, 761-787 (2018) · Zbl 1390.37075 · doi:10.1017/etds.2016.42
[24] Senn, W. M., Phase-locking in the multidimensional Frenkel-Kontorova model, Math Z, 227, 623-643 (1998) · Zbl 0915.73051 · doi:10.1007/PL00004396
[25] Su, X. F.; de la Llave, R., Percival Lagrangian approach to the Aubry-Mather theory, Expo Math, 30, 182-208 (2012) · Zbl 1337.70037 · doi:10.1016/j.exmath.2012.01.003
[26] Wang, K.; Miao, X. Q.; Wang, Y. N., Continuity of depinning force, Adv Math, 335, 276-306 (2018) · Zbl 1394.37045 · doi:10.1016/j.aim.2018.07.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.