×

Computational method for inferring objective function of glycerol metabolism in Klebsiella pneumoniae. (English) Zbl 1158.92013

Summary: Flux balance analysis (FBA) is an effective tool in the analysis of metabolic networks. It can predict the flux distribution of engineered cells, whereas the accurate prediction depends on a reasonable objective function. We propose two nonlinear bilevel programming models on the anaerobic glycerol metabolism in Klebsiella pneumoniae (K. pneumoniae) for 1,3-propanediol (1,3-PD) production. One intends to infer the metabolic objective function, and the other is to analyze the robustness of the objective function.
In view of the models’ characteristic an improved genetic algorithm is constructed to solve them, where some techniques are adopted to guarantee all chromosomes are feasible and move quickly towards the global optimal solution. Numerical results reveal some interesting conclusions, e.g., biomass production is the main force to drive \(K\). pneumoniae metabolism, and the objective functions, which are obtained in terms of several different groups of flux distributions, are similar.

MSC:

92C40 Biochemistry, molecular biology
90C59 Approximation methods and heuristics in mathematical programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ahrens, K.; Menzel, K., Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture. III. Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation, Biotechnol. Bioeng., 59, 544-552 (1998)
[2] Amouzegar, M. A., A global optimization method for nonlinear bilevel programming problem, IEEE Trans. Syst. Man, Cybernet. B: Cybernet., 29, 6, 771-777 (1999)
[3] Bard, J. F., Some properties of the bilevel programming problem, J. Optim. Theory Appl., 68, 371-378 (1991) · Zbl 0696.90086
[4] Bard, J. F., Practical Bilevel Optimization: Algorithm and Application (Series Nonconvex Optimization and its Application) (2006), Springer Verlag
[5] Beard, D. A.; Liang, S. D.; Qian, H., Energy balance for analysis of complex metabolic networks, Biophys. J., 8, 3, 79-86 (2002)
[6] Bibel, H.; Memzel, K.; Zeng, Z. P., Microbial production of 1,3-propanediol, Appl. Microbiol. Biotechnol., 52, 289-297 (1999)
[7] Burgard, A. P.; Maranas, C. D., Optimization-based framework for inferring and testing hypothesized metabolic objective functions, Biotechnol. Bioeng., 82, 6, 670-677 (2003)
[8] Chen, X.; Xiu, Z. L.; Wang, J. F.; Zhang, D. J.; Xu, P., Stoichiometric analysis and experimental investigation of glycerol bioconversion to 1,3-propanediol by Klebsiella pneumoniae under microaerobic conditions, Enzyme Microb. Technol., 33, 386-394 (2003)
[9] Fliege, J.; Vicente, L. N., Multicriteria approach to bilevel optimization, J. Optim. Theory Appl., 131, 2, 209-225 (2006) · Zbl 1139.90417
[10] Gümüs, Z. H.; Floudas, C. A., Global optimization of nonlinear bilevel programming, J. Global Optim., 20, 1-31 (2001) · Zbl 0987.90074
[11] Kauffman, K. J.; Prakash, P.; Edwards, J. S., Advances in flux balance analysis, Curr. Opin. Biotechnol., 14, 491-496 (2003)
[12] Lan, K. W.; Wen, U. P.; Shin, H. S.; Lee, E. S., A hybrid neural network approach to bilevel programming problems, Appl. Mater. Lett., 20, 8, 880-884 (2007) · Zbl 1162.90514
[13] Lee, J. M.; Gianchandani, E. P.; Papin, J. A., Flux balance analysis in the era of metabolomics, Briefings Bioinform., 7, 2, 140-150 (2006)
[14] Maczek, J.; Junne, S., Metabolic flux analysis of the sterol pathway in the yeast Saccharomyces cerevisiae, Bioprocess. Biosyst. Eng., 29, 241-252 (2006)
[15] Menzel, K.; Zeng, A. P.; Deckwer, W. D., Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture. I. The phenomena and characterization of oscillation and hysteresis, Biotechnol. Bioeng., 52, 549-560 (1996)
[16] Menzel, K.; Zeng, A. P.; Deckwer, W. D., High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae, Enzyme Microb. Technol., 20, 82-86 (1997)
[17] Nakamura, C. E.; Whited, G. M., Metabolic engineering for the microbial production of 1,3-propanediol, Curr. Opin. Biotechnol., 14, 454-459 (2003)
[18] Ozkan, P.; Sariyar, B., Metabolic flux analysis of recombinant protein overproduction in Escherichia coli, Biochem. Eng. J., 22, 167-195 (2005)
[19] Sanchez, A. M.; Bennett, G. N., Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains, Metab. Eng., 8, 209-226 (2006)
[20] Shirai, T.; Nakato, A., Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria, Metab. Eng., 7, 59-69 (2005)
[21] Stephanopoulos, G.; Aristidou, A.; Nielsen, J., Metabolic Engineering: Principles and Methodologies (1998), Academic Press: Academic Press San Diego
[22] Wang, G. M.; Wang, X. J.; Wan, Z. P.; Lv, Y. B., A globally convergent algorithm for solving a class of bilevel nonlinear programming problem, Appl. Math. Comput., 188, 1, 166-172 (2007) · Zbl 1117.65093
[23] Zeng, A. P.; Biebl, H.; Schlieker, H.; Deckwer, W. D., Pathway analysis of glycerol fermentation by Klebsiella pneumoniae: regulation of reducing equivalent balance and product formation, Enzyme Microb. Technol., 15, 770-779 (1993)
[24] Zeng, A. P.; Biebl, H., Bulk-chemicals from biotechnology: the case of 1,3-propanediol production and the new trends, Adv. Biochem. Eng. Biotechnol., 74, 239-259 (2002)
[25] Zhang, Q. R.; Xiu, Z. L.; Zeng, A. P., Optimization of microbial production of 1,3-propanediol by Klebsiella pneumoniae under anaerobic and microaerobic conditions by metabolic flux analysis, J. Chem. Ind. Eng., 57, 1403-1409 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.