×

Unified gas-kinetic scheme for microchannel and nanochannel flows. (English) Zbl 1360.76212

Summary: A Unified Gas-Kinetic Scheme (UGKS) is devised for micro and nano channel flow simulations. The principle underlying the scheme is a partial-differential-equation-based modeling in which the gas evolution is modeled with the help of kinetic equation, instead of solving the partial differential equation directly. Elastic collision and inelastic collision have both been taken into consideration in the presented scheme where the inelastic collision is modeled by a Landau-Teller-Jeans-type relaxation term. In this study, two dimensional channel flows are selected as our test cases. First, a thermal conduction case with a wide range of Knudsen number is carried out using the present scheme with different kinetic model equations in order to show the validity of the present scheme and to compare the accuracies of different model equations. Then, a series of pressure driven micro and nano channel flows whose working medium are nitrogen gas are used to validate the proposed scheme. In these cases, the results in both the stream direction and the radial direction agree well with the results predicted by the direct simulation Monte Carlo method, and UGKS results are smoother and without statistical fluctuation. When the density of working gas is high, the non-ideal effect should be taken into consideration. So, at the end of this paper, the presented scheme is also modified using the Enskog theory for non-ideal gas. Based on the gas evolution modeling process which automatically covers the whole scale mechanisms, the cell size and time step of UGKS are not limited by the molecular free path and collision time. Due to the advantages of cell size, time step, and accuracy (no statistical fluctuation), the UGKS is expected to be a practical method for the simulation of micro and nano channel flows.

MSC:

76M28 Particle methods and lattice-gas methods
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Davis, Z. J.; Svendsen, W.; Boisen, A., Design, fabrication and testing of a novel MEMS resonator for mass sensing applications, Microelectron. Eng., 84, 5, 1601-1605 (2007)
[2] Craighead, H. G., Nanoelectromechanical systems, Science, 290, 5496, 1532-1535 (2000)
[3] Staufer, U.; Akiyama, T.; Gullo, M.; Han, A.; Imer, R.; de Rooij, N.; Aebi, U.; Engel, A.; Frederix, P. L.T. M.; Stolz, M., Micro- and nanosystems for biology and medicine, Microelectron. Eng., 84, 5, 1681-1684 (2007)
[4] Colin, S.; Lalonde, P.; Caen, R., Validation of a second-order slip flow model in rectangular microchannels, Heat Transfer Eng., 25, 3, 23-30 (2004)
[5] Deissler, R. G., An analysis of second-order slip flow and temperature-jump boundary conditions for rarefied gases, Int. J. Heat Mass Transfer, 7, 6, 681-694 (1964) · Zbl 0141.43604
[6] Maurer, J.; Tabeling, P.; Joseph, P.; Willaime, H., Second-order slip laws in microchannels for helium and nitrogen, Phys. Fluids, 15, 9, 2613-2621 (2003) · Zbl 1186.76356
[7] Hendy, S.; Jasperse, M.; Burnell, J., Effect of patterned slip on micro- and nanofluidic flows, Phys. Rev. E, 72, 1, 016303 (2005)
[8] Liu, J.; Chen, S.; Nie, X.; Robbins, A continuum-atomistic simulation of heat transfer in micro- and nano-flows, J. Comput. Phys., 227, 1, 279-291 (2007) · Zbl 1130.80010
[9] Chakraborty, S., Order parameter modeling of fluid dynamics in narrow confinements subjected to hydrophobic interactions, Phys. Rev. Lett., 99, 9, 094504 (2007)
[10] Bird, G. A., Approach to translational equilibrium in a rigid sphere gas, Phys. Fluids, 6, 10, 1518-1519 (1963)
[11] Bird, G. A., Monte Carlo simulation of gas flows, Annu. Rev. Fluid Mech., 10, 1, 11-31 (1978) · Zbl 0403.76060
[12] Bird, G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows (1994), Clarendon Press: Clarendon Press Oxford
[13] Boyd, I. D., Relaxation of discrete rotational energy distributions using a Monte Carlo method, Phys. Fluids A, 5, 9, 2278-2286 (2005)
[14] Wang, M.; Li, Z., Simulations for gas flows in microgeometries using the direct simulation Monte Carlo method, Int. J. Heat Fluid Flow, 25, 6, 975-985 (2004)
[15] Cai, C.; Boyd, I. D.; Fan, J.; Candler, G. V., Direct simulation methods for low-speed microchannel flows, J. Thermophys Heat Transfer, 14, 3, 368-378 (2000)
[16] Sun, Q.; Boyd, I. D., A direct simulation method for subsonic, microscale gas flows, J. Comput. Phys., 179, 2, 400-425 (2002) · Zbl 1130.76416
[17] Shen, C.; Fan, J.; Xie, C., Statistical simulation of rarefied gas flows in micro-channels, J. Comput. Phys., 189, 2, 512-526 (2003) · Zbl 1061.76515
[18] Aristov, V. V., Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows (2001), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht, Netherlands · Zbl 0983.82011
[19] Kolobov, V. I.; Arslanbekov, R. R.; Aristov, V. V.; Frolova, A. A.; Zabelok, S. A., Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement, J. Comput. Phys., 223, 2, 589-608 (2007) · Zbl 1183.76851
[20] Morris, A. B.; Varghese, P. L.; Goldstein, D. B., Monte Carlo solution of the Boltzmann equation via a discrete velocity model, J. Comput. Phys., 230, 4, 1265-1280 (2011) · Zbl 1390.82058
[21] Li, Z.-H.; Zhang, H.-X., Gas-kinetic numerical studies of three-dimensional complex flows on spacecraft re-entry, J. Comput. Phys., 228, 4, 1116-1138 (2009) · Zbl 1330.76094
[22] Yang, J. Y.; Huang, J. C., Rarefied flow computations using nonlinear model Boltzmann equations, J. Comput. Phys., 120, 2, 323-339 (1995) · Zbl 0845.76064
[23] Mieussens, L., Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries, J. Comput. Phys., 162, 2, 429-466 (2000) · Zbl 0984.76070
[24] Xu, K.; Huang, J.-C., A unified gas-kinetic scheme for continuum and rarefied flows, J. Comput. Phys., 229, 20, 7747-7764 (2010) · Zbl 1276.76057
[25] Huang, J.-C.; Xu, K.; Yu, P., A unified gas-kinetic scheme for continuum and rarefied flows II: multi-dimensional cases, Commun. Comput. Phys., 12, 3, 662-690 (2012) · Zbl 1373.76216
[26] Huang, J.-C.; Xu, K.; Yu, P., A unified gas-kinetic scheme for continuum and rarefied flows III: microflow simulations, Commun. Comput. Phys., 14, 5, 1147-1173 (2013) · Zbl 1373.76217
[27] Chen, S.; Xu, K.; Li, C.; Cai, Q., A unified gas kinetic scheme with moving mesh and velocity space adaptation, J. Comput. Phys., 231, 20, 6643-6664 (2012)
[28] Guo, Z.; Xu, K.; Wang, R., Discrete unified gas kinetic scheme for all Knudsen number flows: low-speed isothermal case, Phys. Rev. E, 88, 3, 033305 (2013)
[29] Chen, S.; Xu, K.; Lee, C., The dynamic mechanism of a moving Crookes radiometer, Phys. Fluids, 24, 11, 111701 (2012)
[30] Liu, S.; Zhong, C., Modified unified kinetic scheme for all flow regimes, Phys. Rev. E, 85, 6, 066705 (2012)
[31] Bhatnagar, P. L.; Gross, E. P.; Krook, M., A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, 3, 511-525 (1954) · Zbl 0055.23609
[32] Shakhov, E. M., Generalization of the Krook kinetic relaxation equation, Fluid Dyn., 3, 5, 95-96 (1968)
[33] Holway, L. H., New statistical models in kinetic theory: methods of construction, Phys. Fluids, 9, 9, 1658-1673 (1966)
[34] Rykov, V. A., A model kinetic equation for a gas with rotational degrees of freedom, Mekh. Zhid. Gaza, Moscow, 1, 6, 107-115 (1975), Translated from Izvestiya Akademii Nauk SSSR
[35] Van Leer, B., Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method, J. Comput. Phys., 32, 1, 101-136 (1979) · Zbl 1364.65223
[36] Xu, K.; He, X.; Cai, C., Multiple temperature kinetic model and gas-kinetic method for hypersonic non-equilibrium flow computations, J. Comput. Phys., 227, 14, 6779-6794 (2008) · Zbl 1338.76104
[37] Ivanov, M. S.; Gimelshein, S. F., Computational hypersonic rarefied flows, Annu. Rev. Fluid Mech., 30, 1, 469-505 (1998) · Zbl 1398.76088
[38] Koura, K., Statistical inelastic crosssection model for the Monte Carlo simulation of molecules with discrete internal energy, Phys. Fluids A, 4, 8, 1782-1788 (1992)
[39] Parker, J. G., Rotational and vibrational relaxation in diatomic gases, Phys. Fluids, 2, 4, 449-462 (1959)
[42] Cercignani, C., Rarefied Gas Dynamics (2000), Cambridge University Press · Zbl 0850.76620
[43] Patterson, G. N., Molecular Flow of Gases (1956), Wiley: Wiley New York · Zbl 0073.45503
[44] Xu, K.; Li, Z. H., Microchannel flow in the slip regime: gas-kinetic BGK-Burnett solutions, J. Fluid Mech., 513, 1, 87-110 (2004) · Zbl 1107.76070
[45] Karniadakis, G. E.; Beskok, A.; Aluru, N. R., Microflows and Nanoflows (2005), Springer: Springer Berlin, Heidelberg · Zbl 1115.76003
[46] Guo, Z.; Zheng, C.; Shi, B., Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow, Phys. Rev. E, 77, 3, 036707 (2008)
[47] Li, Q.; He, Y. L.; Tang, G. H.; Tao, W. Q., Lattice Boltzmann modeling of microchannel flows in the transition flow regime, Microfluid. Nanofluid., 10, 3, 607-618 (2011)
[48] Zhang, J., Lattice Boltzmann method for microfluidics: models and applications, Microfluid. Nanofluid., 10, 1, 1-28 (2011)
[49] Karniadakis, G. E.; Beskok, A., Micro Flows: Fundamentals and Simulation (2002), Springer: Springer New York · Zbl 0998.76002
[50] Wang, M.; Li, Z., Similarity of ideal gas flow at different scales, Sci. China Ser. E, 46, 6, 661-670 (2003) · Zbl 1311.76120
[51] Wang, M.; Lan, X.; Li, Z., Analyses of gas flows in micro-and nanochannels, Int. J. Heat Mass Transfer, 51, 13, 3630-3641 (2008) · Zbl 1143.82306
[52] Chapman, S.; Cowling, T. G., The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases (1991), Cambridge University Press · Zbl 0726.76084
[53] Wang, M.; Li, Z., An enskog based Monte Carlo method for high knudsen number non-ideal gas flows, Comput. Fluids, 36, 8, 1291-1297 (2007) · Zbl 1194.76244
[54] Schram, P. P.J. M., Kinetic Theory of Gases and Plasmas (1991), Springer
[55] Luo, L.-S., Unified theory of lattice Boltzmann models for nonideal gases, Phys. Rev. Lett., 81, 8, 1618-1621 (1998)
[56] Swift, M. R.; Orlandini, E.; Osborn, W. R.; Yeomans, J. M., Lattice Boltzmann simulations of liquid-gas and binary fluid systems, Phys. Rev. E, 54, 5, 5041-5052 (1996)
[57] He, X.; Shan, X.; Doolen, G. D., Discrete Boltzmann equation model for nonideal gases, Phys. Rev. E, 57, 1, R13-R16 (1998)
[58] Shan, X.; Chen, H., Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation, Phys. Rev. E, 49, 4, 2941-2948 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.