×

Quantum image coding with a reference-frame-independent scheme. (English) Zbl 1348.81159

Summary: For binary images, or bit planes of non-binary images, we investigate the possibility of a quantum coding decodable by a receiver in the absence of reference frames shared with the emitter. Direct image coding with one qubit per pixel and non-aligned frames leads to decoding errors equivalent to a quantum bit-flip noise increasing with the misalignment. We show the feasibility of frame-invariant coding by using for each pixel a qubit pair prepared in one of two controlled entangled states. With just one common axis shared between the emitter and receiver, exact decoding for each pixel can be obtained by means of two two-outcome projective measurements operating separately on each qubit of the pair. With strictly no alignment information between the emitter and receiver, exact decoding can be obtained by means of a two-outcome projective measurement operating jointly on the qubit pair. In addition, the frame-invariant coding is shown much more resistant to quantum bit-flip noise compared to the direct non-invariant coding. For a cost per pixel of two (entangled) qubits instead of one, complete frame-invariant image coding and enhanced noise resistance are thus obtained.

MSC:

81P68 Quantum computation
81P70 Quantum coding (general)
68U10 Computing methodologies for image processing
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Venegas-Andraca, S.E.: Introductory words: special issue on quantum image processing published by Quantum Information Processing. Quantum Inf. Process. 14, 1535-1537 (2015) · Zbl 1322.00037 · doi:10.1007/s11128-015-1001-5
[2] Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9, 1-11 (2010) · doi:10.1007/s11128-009-0123-z
[3] Le, P.H., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10, 63-84 (2011) · Zbl 1209.81066 · doi:10.1007/s11128-010-0177-y
[4] Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: A novel enhanced quantum representation of digital images. Quantum Inf. Process. 12, 2833-2860 (2013) · Zbl 1283.81042 · doi:10.1007/s11128-013-0567-z
[5] Li, H.-S., Qingxin, Z., Lan, S., Shen, C.-Y., Zhou, R., Mo, J.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12, 2269-2290 (2013) · Zbl 1267.81118 · doi:10.1007/s11128-012-0521-5
[6] Li, H.-S., Zhu, Q., Zhou, R.-G., Li, M.-C., Song, I., Ian, H.: Multidimensional color image storage, retrieval, and compression based on quantum amplitudes and phases. Inf. Sci. 273, 212-232 (2014) · doi:10.1016/j.ins.2014.03.035
[7] Jobay, R., Sleit, A.: Quantum inspired shape representation for content based image retrieval. J. Signal Inf. Process. 5, 54-62 (2014)
[8] Caraiman, S., Manta, V.I.: Histogram-based segmentation of quantum images. Theor. Comput. Sci. 529, 46-60 (2014) · Zbl 1358.68309 · doi:10.1016/j.tcs.2013.08.005
[9] Jiang, N., Wu, W., Wang, L., Zhao, N.: Quantum image pseudocolor coding based on the density-stratified method. Quantum Inf. Process. 14, 1735-1755 (2015) · Zbl 1327.81131 · doi:10.1007/s11128-015-0986-0
[10] Mastriani, M.: Quantum Boolean image denoising. Quantum Inf. Process. 14, 1647-1673 (2015) · Zbl 1327.81135 · doi:10.1007/s11128-014-0881-0
[11] Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15, 1-35 (2016) · Zbl 1333.81110 · doi:10.1007/s11128-015-1195-6
[12] Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 79, 555-610 (2007) · Zbl 1205.81042 · doi:10.1103/RevModPhys.79.555
[13] Laing, A., Scarani, V., Rarity, J.G., O’Brien, J.L.: Reference-frame-independent quantum key distribution. Phys. Rev. A 82, 1-5 (2010). pp. 012304 · doi:10.1103/PhysRevA.82.012304
[14] Wallman, J.J., Bartlett, S.D.: Observers can always generate nonlocal correlations without aligning measurements by covering all their bases. Phys. Rev. A 85, 1-4 (2012). pp. 024101
[15] Shadbolt, P., Vértesi, T., Liang, Y.C., Branciard, C., Brunner, N., O’Brien, J.L.: Guaranteed violation of a Bell inequality without aligned reference frames or calibrated devices. Sci. Rep. 2, 1-7 (2012). pp. 470 · doi:10.1038/srep00470
[16] Lawson, T., Pappa, A., Bourdoncle, B., Kerenidis, I., Markham, D., Diamanti, E.: Reliable experimental quantification of bipartite entanglement without reference frames. Phys. Rev. A 90, 1-7 (2014). pp. 042336 · doi:10.1103/PhysRevA.90.042336
[17] Senel, C.F., Lawson, T., Kaplan, M., Markham, D., Diamanti, E.: Demonstrating genuine multipartite entanglement and nonseparability without shared reference frames. Phys. Rev. A 91, 1-6 (2015). pp. 052118
[18] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) · Zbl 1049.81015
[19] Rudolph, T., Grover, L.: Quantum communication complexity of establishing a shared reference frame. Phys. Rev. Lett. 91, 1-4 (2003). pp. 217905 · doi:10.1103/PhysRevLett.91.217905
[20] Peres, A., Scudo, P.F.: Transmission of a Cartesian frame by a quantum system. Phys. Rev. Lett. 87, 1-4 (2001). pp. 167901 · doi:10.1103/PhysRevLett.87.167901
[21] Bagan, E., Baig, M., Muñoz-Tapia, R.: Entanglement-assisted alignment of reference frames using a dense covariant coding. Phys. Rev. A 69, 1-4 (2004). pp. 050303(R)
[22] Bagan, E., Baig, M., Muñoz-Tapia, R.: Quantum reverse engineering and reference-frame alignment without nonlocal correlations. Phys. Rev. A 70, 1-4 (2004). pp. 030301(R) · doi:10.1103/PhysRevA.70.030301
[23] Chiribella, G., DAriano, G.M., Perinotti, P., Sacchi, M.F.: Efficient use of quantum resources for the transmission of a reference frame. Phys. Rev. Lett. 93, 1-4 (2004). pp. 180503 · doi:10.1103/PhysRevLett.93.180503
[24] Bahder, T.B.: Transfer of spatial reference frame using singlet states and classical communication. Quantum Inf. Process. 15, 1069-1080 (2016) · Zbl 1338.81128 · doi:10.1007/s11128-015-1212-9
[25] Golomb, S.W.: The limit behavior of the Z-channel. IEEE Trans. Inf. Theory 26, 372 (1980) · Zbl 0427.94013 · doi:10.1109/TIT.1980.1056175
[26] Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991) · Zbl 0762.94001 · doi:10.1002/0471200611
[27] Chapeau-Blondeau, F., Rousseau, D., Delahaies, A.: Rényi entropy measure of noise-aided information transmission in a binary channel. Phys. Rev. E 81, 1-10 (2010). pp. 051112 · Zbl 1242.94013
[28] Chapeau-Blondeau, F.: Tsallis entropy for assessing quantum correlation with Bell-type inequalities in EPR experiment. Phys. A 414, 204-215 (2014) · doi:10.1016/j.physa.2014.07.053
[29] Everitt, H.: Special issue on experimental aspects of quantum computing: Introduction. Quantum Inf. Process. 3, 1-4 (2004) · doi:10.1007/s11128-004-9416-4
[30] Jones, J.A., Jaksch, D.: Quantum Information, Computation and Communication. Cambridge University Press, Cambridge (2012) · Zbl 1263.81001 · doi:10.1017/CBO9781139028509
[31] Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976) · Zbl 1332.81011
[32] Chapeau-Blondeau, F.: Optimization of quantum states for signaling across an arbitrary qubit noise channel with minimum-error detection. IEEE Trans. Inf. Theory 61, 4500-4510 (2015) · Zbl 1359.81057 · doi:10.1109/TIT.2015.2445213
[33] Chapeau-Blondeau, F.: Optimized probing states for qubit phase estimation with general quantum noise. Phys. Rev. A 91, 1-13 (2015). pp. 052310 · doi:10.1103/PhysRevA.91.052310
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.