×

Uniqueness of entire functions sharing polynomials with their derivatives. (English) Zbl 1177.30038

The authors use the theory of normal families to prove the following. Let \(Q_{1}(z)=a_{1}z^{p}+a_{1,p - 1}z^{p - 1}+ \dots +a_{1,0}\) and \(Q_{2}(z)=a_{2}z^{p}+a_{2,p - 1}z^{p - 1}+ \dots +a_{2,0}\) be two polynomials such that \(\text{deg }Q_{1}=\text{deg } Q_{2}=p\) (where \(p\) is a nonnegative integer), and let \(a_{1},a_{2}\) \((a_{2}\neq 0)\) be two distinct complex numbers. Let \(f(z)\) be a transcendental entire function. If \(f(z)\) and \(f^{\prime }(z)\) share the polynomial \(Q_{1}(z)\) CM and if \(f(z)=Q_{2}(z)\) whenever \(f^{\prime }(z)=Q_{2}(z)\), then \(f\equiv f^{\prime }\). This result improves a result due to X. M. Li and H. X. Yi [Arch. Math. 89, No. 3, 216–225 (2007; Zbl 1131.30013)].

MSC:

30D35 Value distribution of meromorphic functions of one complex variable, Nevanlinna theory
30D20 Entire functions of one complex variable (general theory)

Citations:

Zbl 1131.30013
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] H.-X. Yi and C. C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, China, 1995.
[2] W. K. Hayman, Meromorphic Functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, UK, 1964. · Zbl 0115.06203
[3] L. A. Rubel and C. C. Yang, “Values shared by an entire function and its derivative,” in Complex Analysis, vol. 599 of Lecture Notes in Mathematics, pp. 101-103, Springer, Berlin, Germany, 1977. · Zbl 0362.30026
[4] E. Mues and N. Steinmetz, “Meromorphe Funktionen, die mit ihrer Ableitung Werte teilen,” Manuscripta Mathematica, vol. 29, no. 2-4, pp. 195-206, 1979. · Zbl 0416.30028 · doi:10.1007/BF01303627
[5] J. Li and H.-X. Yi, “Normal families and uniqueness of entire functions and their derivatives,” Archiv der Mathematik, vol. 87, no. 1, pp. 52-59, 2006. · Zbl 1104.30019 · doi:10.1007/s00013-005-1619-0
[6] J.-P. Wang, “Entire functions that share a polynomial with their derivatives,” Journal of Mathematical Analysis and Applications, vol. 320, no. 2, pp. 703-717, 2006. · Zbl 1096.30029 · doi:10.1016/j.jmaa.2005.07.055
[7] X.-M. Li and H.-X. Yi, “On uniqueness of an entire function and its derivatives,” Archiv der Mathematik, vol. 89, no. 3, pp. 216-225, 2007. · Zbl 1131.30013 · doi:10.1007/s00013-007-2158-7
[8] J. Grahl and C. Meng, “Entire functions sharing a polynomial with their derivatives and normal families,” Analysis, vol. 28, no. 1, pp. 51-61, 2008. · Zbl 1135.30312 · doi:10.1524/anly.2008.0902
[9] J. L. Schiff, Normal Families, Universitext, Springer, Berlin, Germany, 1993. · Zbl 0770.30002
[10] S. Li and S. Stević, “Riemann-Stieltjes-type integral operators on the unit ball in \Bbb Cn,” Complex Variables and Elliptic Equations, vol. 52, no. 6, pp. 495-517, 2007. · Zbl 1124.47022 · doi:10.1080/17476930701235225
[11] S. Stevich, “Boundedness and compactness of an integral operator in a mixed norm space on the polydisk,” Sibirskiĭ Matematicheskiĭ Zhurnal, vol. 48, no. 3, pp. 694-706, 2007. · Zbl 1164.47331
[12] L. Zalcman, “A heuristic principle in complex function theory,” The American Mathematical Monthly, vol. 82, no. 8, pp. 813-817, 1975. · Zbl 0315.30036 · doi:10.2307/2319796
[13] J. Clunie and W. K. Hayman, “The spherical derivative of integral and meromorphic functions,” Commentarii Mathematici Helvetici, vol. 40, no. 1, pp. 117-148, 1966. · Zbl 0142.04303 · doi:10.1007/BF02564366
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.