×

Quantum generative adversarial network for generating discrete distribution. (English) Zbl 1474.68272

Summary: Quantum machine learning has recently attracted much attention from the community of quantum computing. In this paper, we explore the ability of generative adversarial networks (GANs) based on quantum computing. More specifically, we propose a quantum GAN for generating classical discrete distribution, which has a classical-quantum hybrid architecture and is composed of a parameterized quantum circuit as the generator and a classical neural network as the discriminator. The parameterized quantum circuit only consists of simple one-qubit rotation gates and two-qubit controlled-phase gates that are available in current quantum devices. Our scheme has the following characteristics and potential advantages: (i) It is intrinsically capable of generating discrete data (e.g., text data), while classical GANs are clumsy for this task due to the vanishing gradient problem. (ii) Our scheme avoids the input/output bottlenecks embarrassing most of the existing quantum learning algorithms that either require to encode the classical input data into quantum states, or output a quantum state corresponding to the solution instead of giving the solution itself, which inevitably compromises the speedup of the quantum algorithm. (iii) The probability distribution implicitly given by data samples can be loaded into a quantum state, which may be useful for some further applications.

MSC:

68T05 Learning and adaptive systems in artificial intelligence
68Q12 Quantum algorithms and complexity in the theory of computing
81P68 Quantum computation

Software:

InfoGAN; Adam
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Abo-Hammour, Z.; Abu Arqub, O.; Alsmadi, O.; Momani, S.; Alsaedi, A., An optimization algorithm for solving systems of singular boundary value problems, Appl. Math. Inf. Sci., 8, 2809-2821 (2014)
[2] Abu Arqub, O.; Abo-Hammour, Z., Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm, Inform. Sci., 279, 396-415 (2014) · Zbl 1354.65155
[3] Abu Arqub, O., Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations, Neural Comput. Appl., 28, 1591-1610 (2017)
[4] Allcock, J.; Zhang, S. Y., Quantum machine learning, Natl. Sci. Rev., 6, 26 (2019)
[5] Benedetti, M.; Garcia-Pintos, D.; Nam, Y.; Perdomo-Ortiz, A., A generative modeling approach for benchmarking and training shallow quantum circuits, NPJ Quant. Inform., 5, 45 (2019)
[6] Benedetti, M.; Grant, E.; Wossnig, L.; Severini, S., Adversarial quantum circuit learning for pure state approximation, New J. Phys., 21, Article 043023 pp. (2019)
[7] Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S., Quantum machine learning, Nature, 549, 195 (2017)
[8] Boixo, S.; Isakov, S. V.; Smelyanskiy, V. N.; Babbush, R.; Ding, N.; Jiang, Z.; Bremner, M. J.; Martinis, J. M.; Neven, H., Characterizing quantum supremacy in near-term devices, Nat. Phys., 14, 595 (2018)
[9] Born, M., Zur Quantenmechanik der Stoßvorgänge, Z. Phys., 37, 863 (1926) · JFM 52.0973.03
[10] Cai, X. D.; Weedbrook, C.; Su, Z. E.; Chen, M. C.; Gu, M.; Zhu, M. J.; Li, L.; Liu, N. L.; Lu, C. Y.; Pan, J. W., Experimental quantum computing to solve systems of linear equations, Phys. Rev. Lett., 110, Article 230501 pp. (2013)
[11] Cai, X. D.; Wu, D.; Su, Z. E.; Chen, M. C.; Wang, X. L.; Li, L.; Liu, N. L.; Lu, C. Y.; Pan, J. W., Entanglement-based machine learning on a quantum computer, Phys. Rev. Lett., 114, Article 110504 pp. (2015)
[12] Cao, H.; Cao, F.; Wang, D., Quantum artificial neural networks with applications, Inform. Sci., 290, 1-6 (2015) · Zbl 1355.81047
[13] Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever, I.; Abbeel, P., Infogan: Interpretable representation learning by information maximizing generative adversarial nets, (Proceedings of the 30th International Conference on Neural Information Processing Systems (2016)), 2172-2180
[14] Cincio, L.; Subasi, Y.; Sornborger, A. T.; Coles, R. J., Learning the quantum algorithm for state overlap, New J. Phys., 20, Article 113022 pp. (2018)
[15] Dallaire-Demers, P.; Killoran, N., Quantum generative adversarial networks, Phys. Rev. A, 98, Article 012324 pp. (2018)
[16] Denton, E.; Chintala, S.; Szlam, A.; Fergus, R., Deep generative image models using a Laplacian pyramid of adversarial networks, (Proceedings of the 29th International Conference on Neural Information Processing Systems (2015)), 1486-1494
[17] Duan, B. J.; Yuan, J. B.; Liu, Y.; Li, D., Quantum algorithm for support matrix machines, Phys. Rev. A, 96, Article 032301 pp. (2017)
[18] Dunjko, V.; Taylor, J. M.; Briegel, H. J., Quantum-enhanced machine learning, Phys. Rev. Lett., 117, Article 130501 pp. (2016)
[19] Goodfellow, I.; Bengio, Y.; Courville, A., Deep Learning (2016), MIT Press · Zbl 1373.68009
[20] Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y., Generative adversarial nets, (Proceedings of the 27th International Conference on Neural Information Processing Systems (2014)), 2672-2680
[21] Harrow, A. W.; Hassidim, A.; Lloyd, S., Quantum algorithm for linear systems of equations, Phys. Rev. Lett., 103, Article 150502 pp. (2009)
[22] Hu, L.; Wu, S. H.; Cai, W. Z.; Ma, Y. W.; Mu, X. H.; Xu, Y.; Wang, H. Y.; Song, Y. P.; Deng, D. L.; Zou, C. L.; Sun, L. Y., Quantum generative adversarial learning in a superconducting quantum circuit, Sci. Adv., 5, eaav2761 (2019)
[23] Huggins, W.; Patel, P.; Whaley, K. B.; Stoudenmire, E. M., Towards quantum machine learning with tensor networks, Quantum Sci. Technol., 4, Article 024001 pp. (2019)
[24] Khoshaman, A.; Vinci, W.; Denis, B.; Andriyash, E.; Amin, M. H., Quantum variational autoencoder, Quantum Sci. Technol., 4, Article 014001 pp. (2018)
[25] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv: 1412.6980.
[26] D.P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv: 1312.6114. · Zbl 1431.68002
[27] Lamata, L.; Alvarez-Rodriguez, U.; Martín-Guerrero, J. D.; Sanz, M.; Solano, E., Quantum autoencoders via quantum adders with genetic algorithms, Quantum Sci. Technol., 4, Article 014007 pp. (2019)
[28] Liu, J. G.; Wang, L., Differentiable learning of quantum circuit Born machine, Phys. Rev. A, 98, Article 062324 pp. (2018)
[29] Lloyd, S.; Mohseni, M.; Rebentrost, P., Quantum principal component analysis, Nat. Phys., 10, 631 (2014)
[30] Lloyd, S.; Weedbrook, C., Quantum generative adversarial learning, Phys. Rev. Lett., 121, Article 040502 pp. (2018)
[31] M. Mirza, S. Osindero, Conditional generative adversarial nets, arXiv: 1411.1784.
[32] Mitarai, K.; Negoro, M.; Kitagawa, M.; Fujii, K., Quantum circuit learning, Phys. Rev. A, 98, Article 032309 pp. (2018)
[33] Monràs, A.; Sentís, G.; Wittek, P., Inductive supervised quantum learning, Phys. Rev. Lett., 118, Article 190503 pp. (2017)
[34] Narayanan, A.; Menneer, T., Quantum artificial neural network architectures and components, Inform. Sci., 128, 231-255 (2000) · Zbl 0980.68095
[35] Nielsen, M. A.; Chuang, I. L., Quantum Computation and Quantum Information (2000), Cambridge University Press · Zbl 1049.81015
[36] A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial networks, arXiv: 1511.06434.
[37] Rebentrost, P.; Mohseni, M.; Lloyd, S., Quantum support vector machine for big data classification, Phys. Rev. Lett., 113, Article 130503 pp. (2014)
[38] Romero, J.; Olson, J. P.; Aspuru-Guzik, A., Quantum autoencoders for efficient compression of quantum data, Quantum Sci. Technol., 2, Article 045001 pp. (2017)
[39] M. Schuld, A. Bocharov, K. Svore, N. Wiebe, Circuit-centric quantum classifiers, arXiv: 1804.00633.
[40] H.Z. Situ, Z.M. He, Y.Y. Wang, L.Z. Li, S.G. Zheng, Quantum generative adversarial network for discrete data, arXiv: 1807.01235.
[41] Wan, K. H.; Dahlsten, O.; Kristjánsson, H.; Gardner, R.; Kim, M. S., Quantum generalisation of feedforward neural networks, NPJ Quantum Information, 3, 36 (2017)
[42] Wiebe, N.; Braun, D.; Lloyd, S., Quantum algorithm for data fitting, Phys. Rev. Lett., 109, Article 050505 pp. (2012)
[43] Yu, C. H.; Gao, F.; Wang, Q. L.; Wen, Q. Y., Quantum algorithm for association rules mining, Phys. Rev. A, 94, Article 042311 pp. (2016)
[44] Yu, C. H.; Gao, F.; Liu, C. H.; Huynh, D.; Reynolds, M.; Wang, J. B., Quantum algorithm for visual tracking, Phys. Rev. A, 99, Article 022301 pp. (2019)
[45] J.F. Zeng, Y.F. Wu, J.G. Liu, L. Wang, J.P. Hu, Learning and inference on generative adversarial quantum circuits, arXiv: 1808.03425.
[46] IBM Quantum Experience: http://www.research.ibm.com/ibm-q/.
[47] https://pytorch.org/.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.