×

An efficient second-order linear scheme for the phase field model of corrosive dissolution. (English) Zbl 1428.65006

Summary: In this paper, we propose an efficient numerical scheme for solving the phase field model (PFM) of corrosive dissolution that is linear and second-order accurate in both time and space. The PFM of corrosion is based on the gradient flow of a free energy functional depending on a phase field variable and a single concentration variable. While classic backward differentiation formula (BDF) schemes have been used for time discretization in the literature, they require very small time step sizes owing to the strong numerical stiffness and nonlinearity of the parabolic partial differential equation (PDE) system defining the PFM. Based on the observation that the governing equation corresponding to the phase field variable is very stiff due to the reaction term, the key idea of this paper is to employ an exponential time integrator that is more effective for stiff dynamic PDEs. By combining the exponential integrator based Rosenbrock-Euler scheme with the classic Crank-Nicolson scheme for temporal integration of the spatially semi-discretized system, we develop a decoupled linear numerical scheme that alleviates the time step size restriction due to high stiffness. Several numerical examples are presented to demonstrate accuracy, efficiency and robustness of the proposed scheme in two-dimensions, and we find that a time step size of \(1 0^{- 3}\) second for meshes with the typical spatial resolution 1\micro m is stable. Additionally, the proposed scheme is robust and does not suffer from any convergence issues often encountered by nonlinear Newton methods.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
35K40 Second-order parabolic systems

Software:

KIOPS; Expokit
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hoeppner, D. W.; Taylor, A. M.H., AVT-140 corrosion fatigue and environmentally assisted cracking in aging military vehicles, (Modelling Pitting Corrosion Fatigue: Pit Growth and Pit/Crack Transition Issues (2011), NATO, RTO, NATO: NATO, RTO, NATO France), (Chapter 13)
[2] Sedriks, A., Corrosion of Stainless Steel (1996), John Wiley and Sons, Inc: John Wiley and Sons, Inc New York, NY, United States
[3] Abubakar, A.; Akhtar, S.; Arif, A. F.M., Phase field modeling of \(V_2 O_5\) hot corrosion kinetics in thermal barrier coatings, Comput. Mater. Sci., 99, 105-116 (2015)
[4] Mai, W.; Soghrati, S.; Buchheit, R., A phase field model for simulating the pitting corrosion, Corros. Sci., 110, 157-166 (2016)
[5] Frankel, G. S.; Sridhar, N., Understanding localized corrosion, Mater. Today, 11, 38-44 (2008)
[6] Macdonald, D.; Urquidi-Macdonald, M., Corrosion damage function-interface between corrosion science and engineering, Corrosion, 48, 354-367 (1992)
[7] Nesic, S.; Nordsveen, M.; Maxwell, N.; Vrhovac, M., Probabilistic modelling of \(CO_2\) corrosion laboratory data using neural networks, Corros. Sci., 43, 1373-1392 (2001)
[8] Macdonald, D. D.; Engelhardt, G. R., 239 predictive modeling of corrosion, (Richardson, T. J.A.; Cottis, B. R.A.; Lindsay, R.; Lyon, S.; Scantlebury, D. J.D.; Stott, H.; etal., Shreir’s Corrosion (2010), Elsevier B.V), 1630-1679
[9] Turnbull, A.; Horner, D. A.; Connolly, B. J., Challenges in modeling the evolution of stress corrosion cracks from pits, Eng. Fract. Mech., 76, 633-640 (2009)
[10] Laycok, N.; White, S., Computer simulation of single pit propagation in stainless steel under potentiostatic control, J. Electrochem. Soc., 148, B264-B275 (2001)
[11] Xiao, J.; Chaudhuri, S., Predictive modeling of localized corrosion: An application to aluminum alloys, Electrochim. Acta, 56, 5630-5641 (2011)
[12] Thamida, S. K., Modeling and simulation of galvanic corrosion pit as a moving boundary problem, Comput. Mater. Sci., 65, 269-275 (2012)
[13] Sarkar, S.; Warner, J. E.; Aquino, W., A numerical framework for the modeling of corrosive dissolution, Corros. Sci., 65, 502-511 (2012)
[14] Duddu, R., Numerical modeling of corrosion pit propagation using the combined extended finite element and level set method, Comput. Mech., 54, 613-627 (2014) · Zbl 1311.74051
[15] Sun, W.; Wang, L.; Wu, T.; Liu, G., An arbitrary Lagrangian-Eulerian model for modelling the time-dependent evolution of crevice corrosion, Corros. Sci., 78, 233-243 (2014)
[16] Duddu, R.; Kota, N.; Qidwai, S. M., An extended finite element method based approach for modeling crevice and pitting corrosion, J. Appl. Mech., 83, Article 081003 pp. (2016)
[17] Yin, L.; Jin, Y.; Leygraf, C.; Birbilis, N.; Pan, J., Numerical simulation of micro-galvanic corrosion in Al alloys: effect of geometric factors, J. Electrochem. Soc., 164, C75-C84 (2017)
[18] Pidaparti, R. M.; Fang, L.; Palakal, M. J., Computational simulation of multi-pit corrosion process in materials, Comput. Math. Sci., 41, 255-265 (2008)
[19] Scheiner, S.; Hellmich, C., Stable pitting corrosion of stainless steel as diffusion-controlled dissolution process with a sharp moving electrode boundary, Corros. Sci., 49, 319-346 (2007)
[20] Chen, Z.; Bobaru, F., Peridynamic modeling of pitting corrosion damage, J. Mech. Phys. Solids, 78, 352-381 (2015)
[21] Chen, Z. G.; Zhang, G. F.; Bobaru, F., The influence of passive film damage on pitting corrosion, J. Electrochem. Soc., 163, C19-C24 (2016)
[22] Mai, W.; Soghrati, S., A phase field model for simulating the stress corrosion cracking initiated from pits, Corros. Sci., 125, 87-98 (2017)
[23] Mai, W.; Soghrati, S., New phase field model for simulating galvanic and pitting corrosion processes, Electrochim. Acta, 260, 290-304 (2018)
[24] Karma, A.; Rappel, W., Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics, Phys. Rev. E, 53, R3017 (1996)
[25] Boettinger, W.; Warren, J.; Beckermann, C.; Karma, A., Phase-field simulation of solidification, Annu. Rev. Mater. Res., 32, 163-194 (2002)
[26] Chen, L., Phase-field models for microstructure evolution, Annu. Rev. Mater. Res., 32, 113-140 (2002)
[27] Pfeifer, S.; Wodo, O.; Ganapathysubramanian, B., An optimization approach to identify processing pathways for achieving tailored thin film morphologies, Comput. Mater. Sci., 143, 486-496 (2018)
[28] Gao, H.; Sun, W., An efficient fully linearized semi-implicit Galerkin-mixed FEM for the dynamical Ginzburg-Landau equations of superconductivity, J. Comput. Phys., 294, 329-345 (2015) · Zbl 1349.65450
[29] Warren, J.; Boettinger, W., Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method, Acta Metall. Mater., 43, 689-703 (1995)
[30] Wheeler, A.; Murray, B.; Schaefer, R., Computation of dendrites using a phase field model, Physica D, 66, 243-262 (1993) · Zbl 0800.76491
[31] Kim, S.; Kim, W.; Suzuki, T., Phase-field model for binary alloys, Phys. Rev. E, 60, 7186 (1999)
[32] Nauts, A.; Wyatt, R., New approach to many-state quantum dynamics: The recursive-residue-generation method, Phys. Rev. Lett., 51, 2238-2241 (1983)
[33] Park, T.; Light, J., Unitary quantum time evolution by iterative Lanczos reduction, J. Chem. Phys., 85, 5870-5876 (1986)
[34] Allopoulos, E.; Saad, Y., Efficient solution of parabolic equations by Krylov approximation methods, SIAM J. Sci. Stat. Comput., 13, 1236-1264 (1992) · Zbl 0757.65101
[35] Al-Mohy, A.; Higham, N., Computing the action of the matrix exponential, with an application to exponential integrators, SIAM J. Sci. Comput., 33, 488-511 (2011) · Zbl 1234.65028
[36] Higham, N.; Al-Mohy, A., Computing matrix functions, Acta Numer., 19, 159-208 (2010) · Zbl 1242.65090
[37] Hochbruck, M.; Lubich, C., On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal., 34, 1911-1925 (1997) · Zbl 0888.65032
[38] Hochbruck, M.; Lubich, C.; Selhofer, H., Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput., 19, 1552-1574 (1998) · Zbl 0912.65058
[39] Vo, H.; Sidje, R., Approximating the large sparse matrix exponential using incomplete orthogonalization and Krylov subspaces of variable dimension, Numer. Linear Algebra Appl., 24, Article e2090 pp. (2017) · Zbl 1424.65063
[40] Ju, L.; Wang, Z., Exponential time differencing gauge method for incompressible viscous flows, Commun. Comput. Phys., 22, 517-541 (2017) · Zbl 1488.65249
[41] Li, S.; Luo, L.; Wang, Z.; Ju, L., An exponential time-integrator scheme for steady and unsteady inviscid flows, J. Comput. Phys., 365, 206-225 (2018) · Zbl 1395.76060
[42] Gaudreault, S.; Pudykiewicz, J., An efficient exponential time integration method for the numerical solution of the shallow water equations on the sphere, J. Comput. Phys., 322, 827-848 (2016) · Zbl 1351.76106
[43] Tambue, A.; Berre, I.; Nordbotten, J., Efficient simulation of geothermal processes in heterogeneous porous media based on the exponential Rosenbrock-Euler and rosenbrock-type methods, Adv. Water Resour., 53, 250-262 (2013)
[44] Ju, L.; Zhang, J.; Du, Q., Fast and accurate algorithms for simulating coarsening dynamics of Cahn-Hilliard equations, Comput. Mater. Sci., 108, 272-282 (2015)
[45] J. Zhang, C. Zhou, Y. Wang, L. Ju, Q. Du, X. Chi, D. Xu, D. Chen, Y. Liu, Z. Liu, Extreme-scale phase field simulations of coarsening dynamics on the Sunway TaihuLight supercomputer, in: Proc. Inter. Conf. High Perf. Comput. Net. Storage Anal.. Article #4, Salt Lake City, UT, USA, 2016.
[46] Hochbruck, M.; Ostermann, A., Exponential integrators, Acta Numer., 19, 209-286 (2010) · Zbl 1242.65109
[47] Hochbruck, M.; Ostermann, A.; Schweitzer, J., Exponential Rosenbrock-type methods, SIAM J. Numer. Anal., 47, 786-803 (2009) · Zbl 1193.65119
[48] Sidje, R., Expokit: A software package for computing matrix exponentials, ACM Trans. Math. Softw., 24, 130-156 (1998) · Zbl 0917.65063
[49] Gaudreault, S.; Rainwater, G.; Tokman, M., KIOPS: A fast adaptive krylov subspace solver for exponential integrators, J. Comput. Phys., 372, 236-255 (2018) · Zbl 1418.65074
[50] Moelans, N.; Blanpain, B.; Wollants, P., An introduction to phase-field modeling of microstructure evolution, CALPHAD, 32, 268-294 (2008)
[51] Zhao, S., A fourth order finite difference method for waveguides with curved perfectly conducting boundaries, Comput. Methods Appl. Mech. Engrg., 199, 2655-2662 (2010) · Zbl 1231.78045
[52] Zhao, S., High order matched interface and boundary methods for the Helmholtz equation in media with arbitrarily curved interfaces, J. Comput. Phys., 229, 3155-3170 (2010) · Zbl 1187.78044
[53] Lazer, A., Characteristic exponents and diagonally dominant linear differential systems, J. Math. Anal. Appl., 35, 215-229 (1971) · Zbl 0215.43901
[54] Ernst, P.; Newman, R., Pit growth studies in stainless steel foils. I. Introduction and pit growth kinetics, Corros. Sci., 44, 927-941 (2002)
[55] Landolt, D.; Chauvy, P.; Zinger, O., Electrochemical micromachining, polishing and surface structuring of metals: fundamental aspects and new developments, Electrochim. Acta, 48, 3185-3201 (2003)
[56] Chan, K. W.; Tjong, S. C., Effect of secondary phase precipitation on the corrosion behaviour of duplex stainless steels, Materials, 7, 5268-5304 (2014)
[57] Yasakau, K. A.; Zheludkevich, M. L.; Lamaka, S. V.; Ferreira, M. G.S., Role of intermetallic phases in localized corrosion of AA5083, Electrochim. Acta, 52, 7651-7659 (2007)
[58] Wilms, M. E.; Gadgil, V. J.; Krougman, J. M.; Ijsseling, F. P., The effect of \(\sigma \)-phase precipitation at \(800{}^\circ\) c on the corrosion resistance in sea-water of a high alloyed duplex stainless steel, Corros. Sci., 36, 871-881 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.