×

Conformal Killing tensors and covariant Hamiltonian dynamics. (English) Zbl 1308.70020

Summary: A covariant algorithm for deriving the conserved quantities for natural Hamiltonian systems is combined with the non-relativistic framework of Eisenhart, and of Duval, in which the classical trajectories arise as geodesics in a higher dimensional space-time, realized by Brinkmann manifolds. Conserved quantities which are polynomial in the momenta can be built using time-dependent conformal Killing tensors with flux. The latter are associated with terms proportional to the Hamiltonian in the lower dimensional theory and with spectrum generating algebras for higher dimensional quantities of order 1 and 2 in the momenta. Illustrations of the general theory include the Runge-Lenz vector for planetary motion with a time-dependent gravitational constant \(G(t)\), motion in a time-dependent electromagnetic field of a certain form, quantum dots, the Hénon-Heiles and Holt systems, respectively, providing us with Killing tensors of rank that ranges from one to six.{
©2014 American Institute of Physics}

MSC:

70H05 Hamilton’s equations
70H33 Symmetries and conservation laws, reverse symmetries, invariant manifolds and their bifurcations, reduction for problems in Hamiltonian and Lagrangian mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Benenti, S.; Chanu, C.; Rastelli, G., Variable separation for natural Hamiltonians with scalar and vector potentials on Riemannian manifolds, J. Math. Phys., 42, 5, 2065-2091 (2001) · Zbl 1024.70010 · doi:10.1063/1.1340868
[2] Kalnins, E. G.; Miller, W., Killing tensors and variable separation for Hamilton-Jacobi and Helmholtz equations, SIAM J. Math. Anal., 11, 1011-1026 (1980) · Zbl 0454.70023 · doi:10.1137/0511089
[3] Kalnins, E. G.; Miller, W., Killing tensors and nonorthogonal variable separation for Hamilton Jacobi equations, SIAM J. Math. Anal., 12, 617-629 (1981) · Zbl 0466.70024 · doi:10.1137/0512054
[4] Benenti, S., Intrinsic characterization of the variable separation in the Hamilton Jacobi equation, J. Math. Phys., 38, 6578-6602 (1997) · Zbl 0899.70011 · doi:10.1063/1.532226
[5] Benenti, S.; Chanu, C.; Rastelli, G., Variable-separation theory for the null Hamilton-Jacobi equation, J. Math. Phys., 46, 042901 (2005) · Zbl 1067.70017 · doi:10.1063/1.1862325
[6] Carter, B., Global structure of the Kerr family of gravitational fields, Phys. Rev., 174, 1559 (1968) · Zbl 0167.56301 · doi:10.1103/PhysRev.174.1559
[7] Crampin, M., Hidden symmetries and Killing tensors, Rep. Math. Phys., 20, 1, 31-40 (1984) · Zbl 0551.58019 · doi:10.1016/0034-4877(84)90069-7
[8] 8.C.Duval and G.Valent, “Quantum integrability of quadratic Killing tensors,” J. Math. Phys.46, 053516 (2005);10.1063/1.1899986C.Duval and G.Valent, e-print arXiv:math-ph/0412059. · Zbl 1110.81116
[9] 9.G. W.Gibbons, T.Houri, D.Kubizňák, and C. M.Warnick, “Some spacetimes with higher rank Killing-Stäckel tensors,” Phys. Lett. B700(1), 68-74 (2011);10.1016/j.physletb.2011.04.047G. W.Gibbons, T.Houri, D.Kubizňák, and C. M.Warnick, e-print arXiv:1103.5366 [gr-qc].
[10] 10.G. W.Gibbons and C.Rugina, “Goryachev-Chaplygin, Kovalevskaya, and Brdička-Eardley-Nappi-Witten pp-waves spacetimes with higher rank Stäckel-Killing tensors,” J. Math. Phys.52, 122901 (2011);10.1063/1.3664754G. W.Gibbons and C.Rugina, e-print arXiv:1107.5987 [gr-qc]. · Zbl 1273.81068
[11] 11.A.Galajinsky, “Higher rank Killing tensors and Calogero model,” Phys. Rev. D85, 085002 (2012);10.1103/PhysRevD.85.085002A.Galajinsky, e-print arXiv:1201.3085 [hep-th].
[12] Visinescu, M., Higher order first integrals, Killing tensors and Killing-Maxwell system, J. Phys.: Conf. Ser., 343, 012126 (2012)
[13] 13.M.Cariglia, G. W.Gibbons, J.-W.van Holten, P. A.Horvathy, P.Kosinski, and P.-M.Zhang, “Killing tensors and canonical geometry,” Classical Quantum Gravity31, 125001 (2014);10.1088/0264-9381/31/12/125001M.Cariglia, G. W.Gibbons, J.-W.van Holten, P. A.Horvathy, P.Kosinski, and P.-M.Zhang, e-print arXiv:1401.8195 [hep-th]. · Zbl 1295.83010
[14] Cariglia, M., Hidden symmetries of Eisenhart-Duval lift metrics and the Dirac equation with flux, Phys. Rev. D, 86, 084050 (2012) · doi:10.1103/PhysRevD.86.084050
[15] 15.G.Gibbons, R.Rietdijk, and J. W.van Holten, “SUSY in the sky,” Nucl. Phys. B404, 42 (1993);10.1016/0550-3213(93)90472-2G.Gibbons, R.Rietdijk, and J. W.van Holten, e-print <ext-link ext-link-type=“arxiv” xlink:href=“http://arxiv.org/abs/hep-th/{ { \penalty -@M }}9303112v1”>arXiv:hep-th/9303112v1. · Zbl 1043.83545
[16] 16.J. W.van Holten, “Covariant Hamiltonian dynamics,” Phys. Rev. D75, 025027 (2007);10.1103/PhysRevD.75.025027J. W.van Holten, e-print arXiv:hep-th/0612216v2.
[17] 17.P. A.Horváthy and J.-P.Ngome, “Conserved quantities in non-abelian monopole fields,” Phys. Rev. D79, 127701 (2009);10.1103/PhysRevD.79.127701P. A.Horváthy and J-P.Ngome, e-print arXiv:0902.0273 [hep-th].
[18] 18.J.-P.Ngome, “Curved manifolds with conserved Runge-Lenz vectors,” J. Math. Phys.50, 122901 (2009);10.1063/1.3266874J.-P.Ngome, e-print arXiv:0908.1204 [math-ph]. · Zbl 1372.53079
[19] 19.M.Visinescu, “Higher order first integrals of motion in a gauge covariant Hamiltonian framework,” Mod. Phys. Lett. A25, 341-350 (2010);10.1142/S0217732310032500M.Visinescu, “Covariant approach of the dynamics of particles in external gauge fields, Killing tensors and quantum gravitational anomalies,” SIGMA7, 037 (2011)10.3842/SIGMA.2011.037;M.Visinescu, e-print arXiv:1102.0095 [hep-th]. · Zbl 1217.81133
[20] 20.T.Igata, T.Koike, and H.Ishihara, “Constants of Motion for Constrained Hamiltonian Systems,” Phys. Rev. D83, 065027 (2011);10.1103/PhysRevD.83.065027TakahisaIgata, TatsuhikoKoike, and HidekiIshihara, e-print arXiv:1005.1815.
[21] 21.D.Kubiznak and M.Cariglia, “On integrability of spinning particle motion in higher-dimensional black hole spacetimes,” Phys. Rev. Lett.108, 051104 (2012);10.1103/PhysRevLett.108.051104D.Kubiznak and M.Cariglia, e-print arXiv:1110.0495 [hep-th]. · Zbl 1251.83029
[22] 22.J.-P.Ngome, P. A.Horváthy, and J.-W.Van Holten, “Dynamical supersymmetry of the spin particle-magnetic field interaction,” J. Phys. A: Math. Theor.43(28), 285401 (2010);10.1088/1751-8113/43/28/285401J.-P.Ngome, P. A.Horváthy, and J.-W.Van Holten, e-print arXiv:1003.0137 [hep-th]. · Zbl 1193.81038
[23] Eisenhart, L. P., Dynamical trajectories and geodesics, Ann. Math., 30, 591-606 (1928) · JFM 55.0452.06 · doi:10.2307/1968307
[24] Dothan, Y., Finite-dimensional spectrum-generating algebras, Phys. Rev. D, 12, 2944-2954 (1970) · Zbl 1227.81192 · doi:10.1103/PhysRevD.2.2944
[25] Brinkmann, H. W., Einstein spaces which are mapped conformally on each other, Math. Ann., 94, 1, 119-145 (1925) · JFM 51.0568.03 · doi:10.1007/BF01208647
[26] Duval, C.; Burdet, G.; Künzle, H. P.; Perrin, M., Bargmann structures and Newton-Cartan theory, Phys. Rev. D, 31, 1841 (1985) · doi:10.1103/PhysRevD.31.1841
[27] 27.C.Duval, G. W.Gibbons, and P.Horváthy, “Celestial mechanics, conformal structures and gravitational waves,” Phys. Rev. D43, 3907 (1991);10.1103/PhysRevD.43.3907C.Duval, G. W.Gibbons, and P.Horváthy, e-print arXiv:hep-th/0512188. · Zbl 1355.53067
[28] 28.J.-M.Souriau, Structure des systèmes dynamiques Dunod (1970);J.-M.Souriau, Structure of Dynamical Systems. A Symplectic View of Physics (Birkhäuser, 1997).
[29] Duval, C.; Horváthy, P. A.; Palla, L., Conformal properties of Chern-Simons vortices in external fields, Phys. Rev. D, 50, 6658 (1994) · doi:10.1103/PhysRevD.50.6658
[30] Jackiw, R., Introducing scale symmetry, Phys. Today, 25, 1, 23-27 (1972) · doi:10.1063/1.3070673
[31] Niederer, U., The maximal kinematical invariance group of the free Schrödinger equations with arbitrary potentials, Helv. Phys. Acta, 45, 802 (1972) · doi:10.5169/seals-114417
[32] Hagen, C. R., Scale and conformal transformations in Galilean-covariant field theory, Phys. Rev. D, 5, 2, 377 (1972) · doi:10.1103/PhysRevD.5.377
[33] Duval, C., Quelques procédures géométriques en dynamique des particules, Thèse d’Etat (1982)
[34] Dirac, P. A. M., A new basis for cosmology, Proc. R. Soc. A, 165, 199-208 (1938) · JFM 64.1379.01 · doi:10.1098/rspa.1938.0053
[35] 35.C.Duval, P. A.Horváthy, and L.Palla, “Conformal symmetry of the coupled Chern-Simons and gauged non-linear Schrödinger equations,” Phys. Lett. B325, 39 (1994);10.1016/0370-2693(94)90068-Xe-print arXiv:hep-th/9401065;C.Duval, P. A.Horváthy, and L.Palla, “Spinors in non-relativistic Chern-Simons electromagnetism,” Ann. Phys.249, 265 (1996);10.1006/aphy.1996.0071e-print arXiv:hep-th/9510114. · Zbl 0869.35078
[36] Hassaïne, M.; Horváthy, P. A., Field-dependent symmetries of a non-relativistic fluid model, Ann. Phys., 282, 218 (2000) · Zbl 1112.70319 · doi:10.1006/aphy.1999.6002
[37] Duval, C.; Hassaïne, M.; Horváthy, P. A., The geometry of Schrödinger symmetry in non-relativistic CFT, Ann. Phys., 324, 5, 1158-1167 (2009) · Zbl 1162.81034 · doi:10.1016/j.aop.2009.01.006
[38] 38.C.Duval and S.Lazzarini, “Schrödinger manifolds,” J. Phys. A: Math. Theor.45, 395203 (2012);10.1088/1751-8113/45/39/395203e-print arXiv:1201.0683 [math-ph]. · Zbl 1264.81249
[39] Cariglia, M.; Gibbons, G., Generalised Eisenhart lift of the Toda chain, J. Math. Phys., 55, 022701 (2014) · Zbl 1298.37045 · doi:10.1063/1.4866318
[40] 40.J. P.Vinti, “Classical solution of the two-body problem if the gravitational constant diminishes inversely with the age of the universe,” Mon. Not. R. Astron. Soc.169, 417-427 (1974);10.1093/mnras/169.3.417D.Lynden-Bell, “On the N-Body Problem in Dirac’s Cosmology,” Notes from Observatories102, 86-87 (1982). · Zbl 0304.70011
[41] Bel, L., “Earth and Moon orbital anomalies,” e-print [gr-qc].
[42] 42.D.Lynden-Bell, “The Newton wonder in mechanics,” Observatory120, 131 (2000);D.Lynden-Bell, “Wandering among Newton wonders,” Observatory120, 192 (2000). · Zbl 0879.01011
[43] Cariglia, M.; Frolov, V. P.; Krtouš, P.; Kubizňák, D., Geometry of Lax pairs: Particle motion and Killing-Yano tensors, Phys. Rev. D, 87, 2, 024002 (2013) · doi:10.1103/PhysRevD.87.024002
[44] Jackiw, R., Dynamical symmetry of the magnetic monopole, Ann. Phys., 129, 183 (1980) · doi:10.1016/0003-4916(80)90295-X
[45] 45.N. S.Simonović and R. G.Nazmitdinov, “Hidden symmetries of two-electron quantum dots in a magnetic field,” Phys. Rev. B67, 041305(R) (2003);10.1103/PhysRevB.67.041305Y.Alhassid, E. A.Hinds, and D.Meschede, “Dynamical symmetries of the perturbed hydrogen atom: The van der Waals interaction,” Phys. Rev. Lett.59, 1545 (1987);10.1103/PhysRevLett.59.1545K.Ganesan and M.Lakshmanan, “Comment on ‘Dynamical symmetries of the perturbed hydrogen atom: The van der Waals interaction ,” Phys. Rev. Lett.62, 232 (1989);10.1103/PhysRevLett.62.232R.Blümel, C.Kappler, W.Quint, and J.Walter, “Chaos and order of laser-cooled ions in a Paul trap,” Phys. Rev. A: At., Mol., Opt. Phys.40, 808 (1989);10.1103/PhysRevA.40.808R.Blümel, C.Kappler, W.Quint, and J.Walter, “Erratum,” Phys. Rev. A46, 8034 (1992).10.1103/PhysRevA.46.8034
[46] Maksym, P. A.; Chakraborty, T., Quantum dots in a magnetic field: Role of electron-electron interactions, Phys. Rev. Lett., 65, 108 (1990) · doi:10.1103/PhysRevLett.65.108
[47] 47.J. L.Birman, R. G.Nazmitdinov, and V. I.Yukalov, “Effects of symmetry breaking in finite quantum systems,” Phys. Rep.526, 1-91 (2013);10.1016/j.physrep.2012.11.005e-print arXiv:1305.5131. · Zbl 1300.82008
[48] 48.P.-M.Zhang, L.-P.Zou, P. A.Horvathy, and G. W.Gibbons, “Separability and dynamical symmetry of quantum dots,” Ann. Phys.341, 94-116 (2014);10.1016/j.aop.2013.11.004e-print arXiv:1308.3035 [hep-th]. · Zbl 1342.81150
[49] 49.P. M.Zhang and P. A.Horvathy, “Kohn’s theorem and Galilean symmetry,” Phys. Lett. B702, 177 (2011);10.1016/j.physletb.2011.06.081e-print arXiv:1105.4401 [hep-th].
[50] Hénon, M.; Heiles, C., The applicability of the third integral of motion: Some numerical experiments, Astron. J., 69, 1, 73-79 (1964) · doi:10.1086/109234
[51] Conte, R.; Musette, M.; Verhoeven, C., Explicit integration of the Hénon-Heiles Hamiltonians, J. Nonlinear Math. Phys., 12, 1, 212-227 (2005) · Zbl 1362.37126 · doi:10.2991/jnmp.2005.12.s1.18
[52] Bountis, T.; Segur, H.; Vivaldi, F., Integrable Hamiltonian systems and the Painlevé property, Phys. Rev. A, 25, 3, 1257 (1982) · doi:10.1103/PhysRevA.25.1257
[53] Chang, Y.; Tabor, M.; Weiss, J., Analytic structure of the Hénon-Heiles Hamiltonian in integrable and nonintegrable regimes, J. Math. Phys., 23, 531 (1982) · Zbl 0492.70019 · doi:10.1063/1.525389
[54] Grammaticos, B.; Dorizzi, B.; Padjen, R., Painlevé property and integrals of motion for the Hénon-Heiles system, Phys. Lett. A, 89, 3, 111-113 (1982) · doi:10.1016/0375-9601(82)90868-4
[55] Fordy, A. P., The Hénon-Heiles system revisited, Phys. D, 52, 2, 204-210 (1991) · Zbl 0753.35102 · doi:10.1016/0167-2789(91)90122-P
[56] Holt, C. R., Construction of new integrable Hamiltonians in two degrees of freedom, J. Math. Phys., 23, 6, 1037-1046 (1982) · Zbl 0501.58020 · doi:10.1063/1.525492
[57] Grammaticos, B.; Dorizzi, B.; Ramani, A., Hamiltonians with high order integrals and the “weak Painlevé” concept, J. Math. Phys., 25, 3470-3473 (1984) · Zbl 0549.70009 · doi:10.1063/1.526103
[58] Grammaticos, B.; Dorizzi, B.; Ramani, A.; Hietarinta, J., Extending integrable Hamiltonian systems from 2 to N dimensions, Phys. Lett. A, 109, 3, 81-84 (1985) · doi:10.1016/0375-9601(85)90259-2
[59] Hietarinta, J., Integrable families of Hénon-Heiles-type Hamiltonians and a new duality, Phys. Rev. A, 28, 3670-3672 (1983) · doi:10.1103/PhysRevA.28.3670
[60] Hietarinta, J.; Grammaticos, B.; Dorizzi, B.; Ramani, A., Coupling-constant metamorphosis and duality between integrable Hamiltonian systems, Phys. Rev. Lett., 53, 1707-1710 (1984) · doi:10.1103/PhysRevLett.53.1707
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.