×

On the convergence of a combined finite volume-finite element method for nonlinear convection-diffusion problems. (English) Zbl 0869.65057

The authors consider a combined finite volume-finite element method for scalar conservation laws with small diffusion, and give a convergence analysis in the case of triangulations of the weakly acute type. The nonlinear convective terms are approximated by a monotone finite volume method on a mesh dual to a triangular grid. For the discretization of the diffusion term, a conforming finite element method with piecewise linear elements is used. With respect to time, the discrete problem is a linearized backward Euler (semi-implicit) scheme.
The convergence proof is carried out with the aid of the discrete maximum principle, a priori estimates, and compactness arguments based on the temporal Fourier transform. With the paper in hand, the theoretical analysis for an efficient numerical scheme for approximating boundary layers as well as slightly smeared shock waves arising from convection dominated convection-diffusion problems such as the dissipative Burgers equation is provided.

MSC:

65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] , and , ”A nonconforming finite element method for a singularly perturbed boundary value problem”, Preprint 1992-10, Department of Mathematics, University College, Cork, Ireland, 1992.
[2] and , ”A nonconforming exponentially fitted finite element method I: The interpolation error”, Preprint MATH-NM-06-1993, Technische Universität Dresden, 1993.
[3] Maximum Principle in Finite Element Models for Convection-Diffusion Phenomena, Mathematics Studies 76, Lecture Notes in Numerical and Applied Analysis Vol. 4, North-Holland, Amsterdam-New York-Oxford, 1983. · Zbl 0508.65049
[4] Kalis, Comment. Math. Univ. Carolinae 34 pp 165– (1993)
[5] and , An analysis of the cell vertex method, Oxford University Computing Lab., Report Number 91/7, May 1992.
[6] Ohmori, RAIRO Numer. Anal. 18 pp 309– (1984) · Zbl 0586.65080 · doi:10.1051/m2an/1984180303091
[7] Risch, M2 AN 24 pp 235– (1990)
[8] Schieweck, M2 AN 23 pp 627– (1989)
[9] ”Full and weighted upwind finite element methods”, in Splines in Numerical Analysis Mathematical Research, Volume 52, and , Eds., Akademie-Verlag, Berlin, 1989. · Zbl 0685.65074
[10] Mathematical Methods in Fluid Dynamics, Pitman Monographs and Surveys in Pure and Applied Mathematics 67, Longman Scientific & Technical, Harlow, 1993.
[11] and , ”Operator splitting method for compressible Euler and Navier-Stokes equations”, in Numerical Methods for the Navier-Stokes Equations, Notes on Numerical Fluid Mechanics, Vol. 47, (, , Eds.), Vieweg, Braunschweig-Wiesbaden, 1994, 70-78. · Zbl 0873.76060 · doi:10.1007/978-3-663-14007-8_8
[12] and , ”Numerical solution of Euler and Navier-Stokes equations for 2D transonic flow”, in Computational Fluid Dynamics-92, Vol. I, Proceedings of the First European CFD Conference, , , , Eds., Elsevier Science Publishers, Amsterdam, 1992.
[13] and , ”Adaptive solutions of the conservation equations on unstructured grids”, in Notes on Numerical Fluid Mechanics, Vol. 35, Proceedings of the Ninth GAMM-Conference on Numerical Methods in Fluid Mechanics, and , Eds., Vieweg, Braunschweig-Wiesbaden, 1992, 321-330. · Zbl 0761.76079 · doi:10.1007/978-3-663-13974-4_31
[14] Feistauer, J. Comput. Appl. Math. 63 pp 179– (1995) · Zbl 0852.76040 · doi:10.1016/0377-0427(95)00051-8
[15] , and , Function Spaces, Academia, Prague, 1977.
[16] Navier-Stokes Equations, North-Holland, Amsterdam-New York-Oxford, 1977.
[17] and , Finite Element Approximation of the Navier-Stokes Equations, Lecture Notes in Mathematics 749, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
[18] Felcman, ZAMM 72 pp 513– (1992)
[19] Numerical Solution of Compressible Flow, Ph.D. Thesis, Faculty of Mathematics and Physics, Charles University, Prague, 1994.
[20] Kröner, SIAM J. Numer. Anal. 31 pp 324– (1994) · Zbl 0856.65104 · doi:10.1137/0731017
[21] The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1979.
[22] Ciarlet, Comput. Methods Appl. Mech. Engrg. 2 pp 17– (1973) · Zbl 0251.65069 · doi:10.1016/0045-7825(73)90019-4
[23] Feistauer, J. Comput. Appl. Math. 44 pp 131– (1992) · Zbl 0766.76049 · doi:10.1016/0377-0427(92)90008-L
[24] Feistauer, M2 AN 24 pp 457– (1990)
[25] , and , Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1994.
[26] Feistauer, Numer. Math. 50 pp 451– (1987) · Zbl 0637.65107 · doi:10.1007/BF01396664
[27] Feistauer, Numer. Math. 52 pp 147– (1988) · Zbl 0642.65075 · doi:10.1007/BF01398687
[28] Feistauer, East-West J. Numer. Math. 1 pp 267– (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.