×

On the quantum mechanics of a particle constrained to generalized cylinders with application to Möbius strips. (English) Zbl 1367.81166

Summary: The intrinsic geometric approach to quantum mechanics has been applied to study nanostructures, as well as aromaticity and other electronic properties of molecules. Usually strong hypotheses on the geometry are made in order to allow for analytical solutions. We undertake the problem of stability, with respect to smooth deformations, of the spectra obtained under such simplifying hypotheses. In this article we show that symmetries can sometimes be removed by solving the problem of a particle constrained to a right cylinder with an arbitrary smooth cross section considering the effects of intrinsic geometry. The topology of the cross section, rather than its geometry, is shown to play a key role in this context. Our solution is applied to a generalized Möbius strip when the median curve is nearly a circle of diameter sufficiently large compared to the width of the strip. We also provide a systematic method for ordering the quantum states of generalized right cylinders according to their energies and apply this method to order the spectra of Möbius strips whose diameters are much larger than their widths. Finally, for the sake of comparison, our results are used to calculate the \(\pi \) electron energy spectra of five aromatic molecules (benzene, pyrazine, pyridine, 1,3 diazyne and 1,3,5 triazyne), showing a fair agreement with experimental data and quantum chemistry calculations.

MSC:

81V55 Molecular physics
82D80 Statistical mechanics of nanostructures and nanoparticles

Software:

GAUSSIAN
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Schrödinger, E., No article title, Ann. Phys., 79, 13-40 (1926)
[2] Schrödinger, E., No article title, Proc. R. Ir. Acad, 46, 9-16 (1940)
[3] Costa, R., No article title, Phys. Rev. A, 23, 1982-1987 (1981) · doi:10.1103/PhysRevA.23.1982
[4] Costa, R., No article title, Phys. Rev. A, 25, 2893-2899 (1982) · doi:10.1103/PhysRevA.25.2893
[5] Gravesen, J.; Willatzen, M.; Voon, L., No article title, J. Math. Phys., 46, 012107 (2005) · Zbl 1076.81011 · doi:10.1063/1.1829376
[6] Gravesen, J.; Willatzen, M., No article title, Phys. Rev. A, 72, 032108 (2005) · doi:10.1103/PhysRevA.72.032108
[7] Filgueiras, C.; Moraes, F., No article title, Ann. Phys., 323, 3150-3157 (2008) · Zbl 1159.81020 · doi:10.1016/j.aop.2008.08.002
[8] Onoe, J.; Ito, T.; Shima, H.; Yoshioka, H.; Kimura, S., No article title, Eur. Lett., 98, 27001 (2012) · doi:10.1209/0295-5075/98/27001
[9] Miliordos, E., No article title, Phys. Rev. A, 82, 062118-1-062118-6 (2010) · doi:10.1103/PhysRevA.82.062118
[10] Li, Z.; Ram-Mohan, L., No article title, Phys. Rev. B, 85, 195438 (2012) · doi:10.1103/PhysRevB.85.195438
[11] Rosa, S.; Montero, J.; Moreno, P.; Venegas, J.; Dehesa, J., No article title, J. Math. Chem., 49, 971-994 (2011) · Zbl 1305.81041 · doi:10.1007/s10910-010-9790-3
[12] Corzo, H.; Laguna, H.; Sagar, R., No article title, J. Math. Chem., 50, 233-248 (2012) · Zbl 1238.92082 · doi:10.1007/s10910-011-9908-2
[13] Halverson, F.; Hirt, R., No article title, J. Chem. Phys., 19, 711-717 (1951) · doi:10.1063/1.1748338
[14] Romand, J.; Vodar, B., No article title, Compt. Rend., 233, 930-932 (1951)
[15] Akira, G.; Masaaki, F.; Mitsuo, I., No article title, J. Phys. Chem., 91, 2268-2273 (1987) · doi:10.1021/j100293a012
[16] Lias, S.; Bartmess, J.; Liebman, J.; Holmes, J.; Levin, R.; Mallard, W., No article title, J. Phys. Chem. Ref. Data, 17, 1-861 (1988)
[17] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery, T. Vreven, K. Kudin, J. Burant, J. Millam, S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. Knox, H. Hratchian, J. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. Stratmann, O. Yazyev, A. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Ayala, K. Morokuma, G. Voth, P. Salvador, J. Dannenberg, V. Zakrzewski, S. Dapprich, A. Daniels, M. Strain, O. Farkas, D. Malick, A. Rabuck, K. Raghavachari, J. Foresman, J. Ortiz, Q. Cui, A. Baboul, S. Clifford, J. Cioslowski, B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Martin, D. Fox, T. Keith, M. Al-Laham, C. Peng, A. Nanayakkara, M. Challacombe, P. Gill, B. Johnson, W. Chen, M. Wong, C. Gonzalez, J. Pople, Gaussian 03, Revision C.02 (Gaussian, Inc, Wallingford, 2004)
[18] Massey, W., No article title, Tohoku Math. J., 14, 73-79 (1962) · Zbl 0114.36903 · doi:10.2748/tmj/1178244205
[19] Starostin, E.; Heijden, G., No article title, Nat. Mater., 6, 563-567 (2007) · doi:10.1038/nmat1929
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.