×

Isogeometric analysis and genetic algorithm for shape-adaptive composite marine propellers. (English) Zbl 1423.74271

Summary: This paper presents a layup optimisation algorithm for composite marine propellers, including the hygrothermal effects, using Non-Uniform Rational B-Splines (NURBS) based FEM coupled with real-coded Genetic Algorithm (GA). The use of Iso-Geometric Analysis (IGA) enables accurate representation of complex marine propeller blades, coupled with GA for both continuous and mixed integer ply angle optimisation. The optimisation scheme was further investigated multi-objective, multi-material and multiple layer thickness optimisation scenarios. Furthermore, the IGA-FEM solver was constructed based on constitutive equations that take into account the hygrothermal effects that must be addressed to enable the optimisation of non-symmetric layups. Such non-symmetric layup patterns are proposed to be used to create extension-twist coupling to gain further control in layup optimisation. The optimisation technique is presented here as a method to widen the efficiency envelope of marine propellers. However, the same approach can potentially be adopted to cater many other practical applications such as composite wind turbine blades, aircraft propellers and other general composite ply angle optimisation scenarios. The paper discusses the proposed framework for optimisation of marine propeller, numerical tools used in the process and results under different conditions.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
65D17 Computer-aided design (modeling of curves and surfaces)
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74P10 Optimization of other properties in solid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Mulcahy, N. L.; Prusty, B. G.; Gardiner, C. P., Flexible composite hydrofoils and propeller blades, Trans. R. Inst. Nav. Archit. Part B: Int. J. Small Craft Technol., 153, B39-B46, (2011)
[2] Y.L. Young, Hydroelastic behavior of flexible composite propellers in wake inflow, in: Proc. 16th International Conference on Composite Materials Kyoto, Japan, 2007.
[3] Mulcahy, N. L.; Prusty, B. G.; Gardiner, C., Hydroelastic design of composite components, Int. J. Ship Offshore Struct., 5, 359-370, (2010)
[4] Liu, Z.; Young, Y. L., Utilization of bend-twist coupling for performance enhancement of composite marine propellers, J. Fluids Struct., 25, 1102-1116, (2009)
[5] Awad, Z. K.; Aravinthan, T.; Zhuge, Y.; Gonzalez, F., A review of optimization techniques used in the design of fibre composite structures for civil engineering applications, Mater. Des., 33, 534-544, (2012)
[6] Nagendra, S.; Jestin, D.; Gürdal, Z.; Haftka, R. T.; Watson, L. T., Improved genetic algorithm for the design of stiffened composite panels, Comput. Struct., 58, 543-555, (1996) · Zbl 0900.73951
[7] Soremekun, G.; Gürdal, Z.; Haftka, R. T.; Watson, L. T., Composite laminate design optimization by genetic algorithm with generalized elitist selection, Comput. Struct., 79, 131-143, (2001)
[8] Kemal Apalak, M.; Yildirim, M.; Ekici, R., Layer optimisation for maximum fundamental frequency of laminated composite plates for different edge conditions, Compos. Sci. Technol., 68, 537-550, (2008)
[9] Almeida, F. S.; Awruch, A. M., Design optimization of composite laminated structures using genetic algorithms and finite element analysis, Compos. Struct., 88, 443-454, (2009)
[10] Ghasemi, H.; Brighenti, R.; Zhuang, X.; Muthu, J.; Rabczuk, T., Optimization of fiber distribution in fiber reinforced composite by using NURBS functions, Comput. Mater. Sci., 83, 463-473, (2014)
[11] Lee, Y.-J.; Lin, C.-C., Optimized design of composite propeller, Mech. Adv. Mater. Struct., 11, 17-30, (2004)
[12] Motley, M. R.; Young, Y. L., Performance-based design and analysis of flexible composite propulsors, J. Fluids Struct., 27, 1310-1325, (2011)
[13] Lin, C.-C.; Lee, Y.-J., Stacking sequence optimization of laminated composite structures using genetic algorithm with local improvement, Compos. Struct., 63, 339-345, (2004)
[14] Lin, C. C.; Lee, Y. J.; Hung, C. S., Optimization and experiment of composite marine propellers, Compos. Struct., 89, 206-215, (2009)
[15] M.M. Pluciński, Y.L. Young, Z. Liu, Optimization of a self-twisting composite marine propeller using genetic algorithms, in: 16th International Conference on Composite Materials, Kyoto, Japan, 2007.
[16] Herath, M. T.; Natarajan, S.; Prusty, B. G.; St. John, N., Smoothed finite element and genetic algorithm based optimization for shape adaptive composite marine propellers, Compos. Struct., 109, 189-197, (2014)
[17] Nguyen-Thoi, T.; Phung-Van, P.; Nguyen-Xuan, H.; Thai-Hoang, C., A cell-based smoothed discrete shear gap method using triangular elements for static and free vibration analyses of Reissner-Mindlin plates, Internat. J. Numer. Methods Engrg., 91, 705-741, (2012) · Zbl 1253.74111
[18] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195, (2005) · Zbl 1151.74419
[19] Kuiper, G., The wageningen propeller series, (1992), Maritime Research Institute Netherlands The Netherlands
[20] Kikuchi, F.; Ishii, K., An improved 4-node quadrilateral plate bending element of the Reissner-Mindlin type, Comput. Mech., 23, 240-249, (1999) · Zbl 0962.74062
[21] Carrera, E., Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking, ARCO, 10, 215-296, (2003) · Zbl 1140.74549
[22] M.W. Nixon, Extension-twist coupling of composite circular tubes with application to tilt rotor blade design, in: Proceedings of 28th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, 1987, pp. 295-303.
[23] Armanios, E. A.; Hooke, D.; Kamat, M.; Palmer, D.; Li, J., Design and testing of composite laminates with optimum extension-twist coupling, Compos. Mater. Test. Des., 11, 249-262, (1977)
[24] Mulcahy, N. L.; Prusty, B. G.; Gardiner, C. P., Optimisation of composite adaptive response with experimental validation, (Topping, B. H.V.; Papadrakakis, M., Ninth International Conference on Computational Structures Technology, (2008), Civil-Comp Press Stirlingshire, Scotland, Athens, Greece)
[25] M.T. Herath, B.G. Prusty, Performance analysis and optimization of bend-twist coupled composite hydrofoils using fluid-structure interaction, in: Proc. 7th Australasian Congress on Applied Mechanics, Adelaide, Australia, 2012.
[26] Motley, M. R.; Liu, Z.; Young, Y. L., Utilizing fluid-structure interactions to improve energy efficiency of composite marine propellers in spatially varying wake, Compos. Struct., 90, 304-313, (2009)
[27] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric analysis: toward integration of CAD and FEA, (2009), Wiley · Zbl 1378.65009
[28] Beirão da Veiga, L.; Buffa, A.; Lovadina, C.; Martinelli, M.; Sangalli, G., An isogeometric method for the Reissner-Mindlin plate bending problem, Comput. Methods Appl. Mech. Engrg., 209-212, 45-53, (2012) · Zbl 1243.74101
[29] Valizadeh, N.; Natarajan, S.; Gonzalez-Estrada, O. A.; Rabczuk, T.; Bui, T. Q.; Bordas, S. P.A., NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter, Compos. Struct., 99, 309-326, (2013)
[30] Thai, C. H.; Nguyen-Xuan, H.; Nguyen-Thanh, N.; Le, T. H.; Nguyen-Thoi, T.; Rabczuk, T., Static, free vibration, and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach, Internat. J. Numer. Methods Engrg., 91, 571-603, (2012) · Zbl 1253.74007
[31] Goupee, A. J.; Vel, S. S., Two-dimensional optimization of material composition of functionally graded materials using meshless analyses and a genetic algorithm, Comput. Methods Appl. Mech. Engrg., 195, 5926-5948, (2006) · Zbl 1145.74031
[32] Lee, Y. J.; Lin, C. C.; Ji, J. C.; Chen, J. S., Optimization of a composite rotor blade using a genetic algorithm with local search, J. Reinf. Plast. Compos., 24, 1759-1769, (2005)
[33] Deep, K.; Singh, K. P.; Kansal, M. L.; Mohan, C., A real coded genetic algorithm for solving integer and mixed integer optimization problems, Appl. Math. Comput., 212, 505-518, (2009) · Zbl 1168.65353
[34] Deep, K.; Thakur, M., A new crossover operator for real coded genetic algorithms, Appl. Math. Comput., 188, 895-911, (2007) · Zbl 1137.90726
[35] Baker, J. E., Reducing bias and inefficiency in the selection algorithm, (Proc. of the Second International Conference on Genetic Algorithms on Genetic algorithms and their application, (1987), L. Erlbaum Associates Inc. Cambridge, Massachusetts, USA), 14-21
[36] Herrera, F.; Lozano, M.; Verdegay, J. L., Tackling real-coded genetic algorithms: operators and tools for behavioural analysis, Artif. Intell. Rev., 12, 265-319, (1998) · Zbl 0905.68116
[37] Goldberg, D. E.; Deb, K., A comparative analysis of selection schemes used in genetic algorithms, Urbana, 51, 61801-62996, (1991)
[38] Jong, K.; Spears, W., An analysis of the interacting roles of population size and crossover in genetic algorithms, (Schwefel, H.-P.; Männer, R., Parallel Problem Solving from Nature, (1991), Springer Berlin Heidelberg), 38-47
[39] Maaranen, H.; Miettinen, K.; Mäkelä, M. M., Quasi-random initial population for genetic algorithms, Comput. Math. Appl., 47, 1885-1895, (2004) · Zbl 1074.90036
[40] Matsumoto, M.; Nishimura, T., Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator, ACM Trans. Model. Comput. Simul., 8, 3-30, (1998) · Zbl 0917.65005
[41] Bratley, P.; Fox, B. L., Algorithm 659: implementing sobol’s quasirandom sequence generator, ACM Trans. Math. Software, 14, 88-100, (1988) · Zbl 0642.65003
[42] Stein, M., Large sample properties of simulations using Latin hypercube sampling, Technometrics, 29, 143-151, (1987) · Zbl 0627.62010
[43] Soden, P. D.; Hinton, M. J.; Kaddour, A. S., Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates, Compos. Sci. Technol., 58, 1011-1022, (1998)
[44] Simpson, R. N.; Bordas, S. P.A.; Trevelyan, J.; Rabczuk, T., A two-dimensional isogeometric boundary element method for elastostatic analysis, Comput. Methods Appl. Mech. Engrg., 209-212, 87-100, (2012) · Zbl 1243.74193
[45] Simpson, R. N.; Bordas, S. P.A.; Lian, H.; Trevelyan, J., An isogeometric boundary element method for elastostatic analysis: 2D implementation aspects, Comput. Struct., 118, 2-12, (2013)
[46] Shojaee, S.; Izadpanah, E.; Valizadeh, N.; Kiendl, J., Free vibration analysis of thin plates by using a NURBS-based isogeometric approach, Finite Elem. Anal. Des., 61, 23-34, (2012)
[47] Scott, M. A.; Simpson, R. N.; Evans, J. A.; Lipton, S.; Bordas, S. P.A.; Hughes, T. J.R.; Sederberg, T. W., Isogeometric boundary element analysis using unstructured T-splines, Comput. Methods Appl. Mech. Engrg., 254, 197-221, (2013) · Zbl 1297.74156
[48] Marler, R. T.; Arora, J. S., Survey of multi-objective optimization methods for engineering, Struct. Multidiscip. Optim., 26, 369-395, (2004) · Zbl 1243.90199
[49] Ghasemi, H.; Rafiee, R.; Zhuang, X.; Muthu, J.; Rabczuk, T., Uncertainties propagation in metamodel-based probabilistic optimization of CNT/polymer composite structure using stochastic multi-scale modeling, Comput. Mater. Sci., 85, 295-305, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.