×

zbMATH — the first resource for mathematics

Adaptive variational model for contrast enhancement of low-light images. (English) Zbl 1434.68587
MSC:
68T45 Machine vision and scene understanding
65K10 Numerical optimization and variational techniques
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Abdullah-Al-Wadud, M. H. Kabir, M. A. A. Dewan, and O. Chae, A dynamic histogram equalization for image contrast enhancement, IEEE Trans. Consumer Electron., 53 (2007), pp. 593-600.
[2] L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, Oxford, UK, 2000. · Zbl 0957.49001
[3] T. Arici, S. Dikbas, and Y. Altunbasak, A histogram modification framework and its application for image contrast enhancement, IEEE Trans. Image Process., 18 (2009), pp. 1921-1935. · Zbl 1371.94028
[4] S. G. Bardeji, I. N. Figueiredo, and E. Sousa, Image contrast enhancement using split Bregman method, in Proceedings of the 5th ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing, 2015, pp. 63-67.
[5] T. Batard and M. Bertalmío, A geometric model of brightness perception and its application to color images correction, J. Math. Imaging Vision, 60 (2018), pp. 849-881. · Zbl 1437.94007
[6] A. Beghdadi and A. L. Negrate, Contrast enhancement technique based on local detection of edges, Comput. Vision Graphics Image Process., 46 (1989), pp. 162-174.
[7] M. Bertalmío, V. Caselles, and E. Provenzi, Issues about retinex theory and contrast enhancement, Internat. J. Comput. Vision, 83 (2009), pp. 101-119.
[8] M. Bertalmío, V. Caselles, E. Provenzi, and A. Rizzi, Perceptual color correction through variational techniques, IEEE Trans. Image Process., 16 (2007), pp. 1058-1072.
[9] G. Boccignone and A. Picariello, Multiscale contrast enhancement of medical images, in 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 4, IEEE, 1997, pp. 2789-2792.
[10] X. Bresson and T. F. Chan, Fast dual minimization of the vectorial total variation norm and application to color image processing, Inverse Probl. Imaging, 2 (2008), pp. 455-484. · Zbl 1188.68337
[11] J.-F. Cai, S. Osher, and Z. Shen, Split Bregman methods and frame based image restoration, Multiscale Model. Simul., 8 (2009), pp. 337-369, https://doi.org/10.1137/090753504. · Zbl 1189.94014
[12] V. Caselles, J. L. Lisani, J. M. Morel, and G. Sapiro, Shape preserving local histogram modification, IEEE Trans. Image Process., 8 (1999), pp. 220-230.
[13] Z. Chen, B. R. Abidi, D. L. Page, and M. A. Abidi, Gray-level grouping (GLG): An automatic method for optimized image contrast enhancement-part I: The basic method, IEEE Trans. Image Process., 15 (2006), pp. 2290-2302.
[14] S. D. Chen and A. R. Ramli, Minimum mean brightness error bi-histogram equalization in contrast enhancement, IEEE Trans. Consumer Electron., 49 (2003), pp. 1310-1319.
[15] Y. Chen and T. Wunderli, Adaptive total variation for image restoration in BV space, J. Math. Anal. Appl., 272 (2002), pp. 117-137. · Zbl 1020.68104
[16] H. D. Cheng and H. Xu, A novel fuzzy logic approach to contrast enhancement, Pattern Recognition, 33 (2000), pp. 809-819.
[17] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed., John Wiley & Sons, New York, 2006. · Zbl 1140.94001
[18] J. Eckstein and D. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Programming, 55 (1992), pp. 293-318. · Zbl 0765.90073
[19] R. Franzen, Kodak Lossless True Color Image Suite, http://r0k.us/graphics/kodak, 1999.
[20] A. Galdran, J. Vazquez-Corral, D. Pardo, and M. Bertalmío, Enhanced variational image dehazing, SIAM J. Imaging Sci., 8 (2015), pp. 1519-1546, https://doi.org/10.1137/15M1008889. · Zbl 1341.94004
[21] C. Gatta, A. Rizzi, and D. Marini, ACE: An automatic color equalization algorithm, in Proceedings of the First European Conference on Color in Graphics, Image, and Vision (CGIV02), 2002, pp. 316-320.
[22] P. Getreuer, Automatic color enhancement (ACE) and its fast implementation, Image Process. On Line, 2 (2012), pp. 266-277.
[23] T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2 (2009), pp. 323-343, https://doi.org/10.1137/080725891. · Zbl 1177.65088
[24] S.-C. Huang, F.-C. Cheng, and Y.-S. Chiu, Efficient contrast enhancement using adaptive gamma correction with weighting distribution, IEEE Trans. Image Process., 22 (2013), pp. 1032-1041. · Zbl 1373.94176
[25] S.-C. Huang and C.-H. Yeh, Image contrast enhancement for preserving mean brightness without losing image features, Engrg. Appl. Artif. Intell., 26 (2013), pp. 1487-1492.
[26] Y.-T. Kim, Contrast enhancement using brightness preserving bi-histogram equalization, IEEE Trans. Consumer Electron., 43 (1997), pp. 1-8.
[27] T. K. Kim, J. K. Paik, and B. S. Kang, Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering, IEEE Trans. Consumer Electron., 44 (1998), pp. 82-86.
[28] A. Laine, J. Fan, and W. Yang, Wavelets for contrast enhancement of digital mammography, IEEE Engrg. Med. Biol. Mag., 14 (1995), pp. 536-550.
[29] E. H. Land and J. J. McCann, Lightness and retinex theory, J. Opt. Soc. Amer., 61 (1971), pp. 1-11.
[30] C. Lee, C. Lee, and C.-S. Kim, Contrast enhancement based on layered difference representation of \(2\) D histograms, IEEE Trans. Image Process., 22 (2013), pp. 5372-5384.
[31] F. Li and T. Zeng, Variational image fusion with first and second-order gradient information, J. Comput. Math., 34 (2016), pp. 200-222. · Zbl 1363.68217
[32] N. Limare, J.-L. Lisani, J.-M. Morel, A. B. Petro, and C. Sbert, Simplest color balance, Image Process. On Line, 1 (2011), pp. 297-315.
[33] J.-L. Lisani, An analysis and implementation of the shape preserving local histogram modification algorithm, Image Process. On Line, 8 (2018), pp. 408-434.
[34] J.-M. Morel, A. B. Petro, and C. Sbert, Screened Poisson equation for image contrast enhancement, Image Process. On Line, 4 (2014), pp. 16-29.
[35] R. Palma-Amestoy, E. Provenzi, M. Bertalmío, and V. Caselles, A perceptually inspired variational framework for color enhancement, IEEE Trans. Pattern Anal. Mach. Intell., 31 (2009), pp. 458-474.
[36] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), pp. 629-639.
[37] A. B. Petro, C. Sbert, and J.-M. Morel, Multiscale retinex, Image Process. On Line, 4 (2014), pp. 71-88.
[38] A. B. Petro, C. Sbert, and J.-M. Morel, Automatic correction of image intensity non-uniformity by the simplest total variation model, Methods Appl. Anal., 21 (2014), pp. 91-104. · Zbl 1401.94021
[39] F. Pierre, J.-F. Aujol, A. Bugeau, G. Steidl, and V.-T. Ta, Variational contrast enhancement of gray-scale and RGB images, J. Math. Imaging Vision, 57 (2017), pp. 99-116. · Zbl 1425.68443
[40] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, and K. Zuiderveld, Adaptive histogram equalization and its variations, Comput. Vision Graphics Image Process., 39 (1987), pp. 355-368.
[41] A. Polesel, G. Ramponi, and V. J. Mathews, Image enhancement via adaptive unsharp masking, IEEE Trans. Image Process., 9 (2000), pp. 505-510.
[42] E. Provenzi and V. Caselles, A wavelet perspective on variational perceptually-inspired color enhancement, Internat. J. Comput. Vision, 106 (2014), pp. 153-171. · Zbl 1328.68281
[43] E. Provenzi, L. De Carli, A. Rizzi, and D. Marini, Mathematical definition and analysis of the retinex algorithm, J. Opt. Soc. Amer. A, 22 (2005), pp. 2613-2621.
[44] M. A. Qureshi, A. Beghdadi, and M. Deriche, Towards the design of a consistent image contrast enhancement evaluation measure, Signal Process. Image Commun., 58 (2017), pp. 212-227.
[45] A. Rizzi, C. Gatta, and D. Marini, A new algorithm for unsupervised global and local color correction, Pattern Recognition Lett., 124 (2003) pp. 1663-1677.
[46] A. Rizzi, C. Gatta, and D. Marini, From retinex to automatic color equalization: Issues in developing a new algorithm for unsupervised color equalization, J. Electron. Imaging, 13 (2004), pp. 75-84.
[47] R. H. Sherrier and G. A. Johnson, Regionally adaptive histogram equalization of the chest, IEEE Trans. Med. Imaging, 6 (1987), pp. 1-7.
[48] J. A. Stark, Adaptive image contrast enhancement using generalizations of histogram equalization, IEEE Trans. Image Process., 9 (2000), pp. 889-896.
[49] C. Wu and X.-C. Tai, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3 (2010), pp. 300-339, https://doi.org/10.1137/090767558. · Zbl 1206.90245
[50] Z. Yu and C. Bajaj, A fast and adaptive method for image contrast enhancement, in Proceedings of 2004 International Conference on Image Processing, Vol. 2, 2004, pp. 1001-1004.
[51] J. Zimmerman, S. Pizer, E. Staab, E. Perry, W. McCartney, and B. Brenton, Evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement, IEEE Trans. Med. Imaging, 7 (1988), pp. 304-312.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.