×

Optimal mixing of buoyant jets and plumes in stratified fluids: theory and experiments. (English) Zbl 1382.76275

Summary: The influence of ambient fluid stratification on buoyant miscible jets and plumes is studied theoretically and experimentally. Given a fixed set of jet/plume parameters, and an ambient fluid stratification sandwiched between top and bottom homogeneous densities, a theoretical criterion is identified to show how step-like density profiles constitute the most effective mixers within a broad class of stable density transitions. This is assessed both analytically and experimentally, respectively by establishing rigorous a priori estimates on generalized Morton-Taylor-Turner (MTT) models [B. R. Morton et al., Proc. R. Soc. Lond., Ser. A 234, 1–23 (1956; Zbl 0074.45402)] and [H. B. Fischer et al., Mixing in inland and coastal waters. Academic Press (1979)], and by studying a critical phenomenon determined by the distance between the jet/plume release height with respect to the depth of the ambient density transition. For fluid released sufficiently close to the background density transition, the buoyant jet fluid escapes and rises indefinitely. For fluid released at locations lower than a critical depth, the buoyant fluid stops rising and is trapped indefinitely. A mathematical formulation providing rigorous estimates on MTT models is developed along with nonlinear jump conditions and an exact critical-depth formula that is in good quantitative agreement with the experiments. Our mathematical analysis provides rigorous justification for the critical trapping/escaping criteria, first presented in [C. P. Caulfied and A. W. Woods, J. Fluid Mech. 360, 229–248 (1998; Zbl 0930.76039)], within a class of algebraic density decay rates. Further, the step-like background stratification is shown to be the most efficient mixing profile amongst a broad family of stably stratified profiles sharing the same density transition within a fixed distance. Finally, the analysis uncovers surprising differences between the Gaussian and top-hat profile closures concerning initial mixing of the jet and ambient fluid.

MSC:

76T25 Granular flows
76F45 Stratification effects in turbulence
86A05 Hydrology, hydrography, oceanography
86A10 Meteorology and atmospheric physics
76-05 Experimental work for problems pertaining to fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Adalsteinsson, D., Camassa, R., Harenberg, S., Lin, Z., McLaughlin, R. M., Mertens, K., Reis, J., Schlieper, W. & White, B.2011Subsurface trapping of oil plumes in stratification: laboratory investigations. Geophys. Mon. Ser.195, 257-261.
[2] Briggs, G. A.1965A plume rise model compared with observations. J. Air Pollut. Control Assoc.15, 433-438.10.1080/00022470.1965.10468404 · doi:10.1080/00022470.1965.10468404
[3] Candelier, F. & Vauquelin, O.2012Matched asymptotic solutions for turbulent plumes. J. Fluid Mech.699, 489-499.10.1017/jfm.2012.1342923689 · Zbl 1248.76101 · doi:10.1017/jfm.2012.134
[4] Carazzo, G., Kaminski, E. & Tait, S.2006The route to self-similarity in turbulent jets and plumes. J. Fluid Mech.547, 137-148.10.1017/S002211200500683XS002211200500683X · Zbl 1082.76055 · doi:10.1017/S002211200500683X
[5] Caulfield, C. P. & Woods, A. W.1998Turbulent gravitational convection from a point source in a non-uniformly stratified environment. J. Fluid Mech.360, 229-248.10.1017/S00221120980086231621540 · Zbl 0930.76039 · doi:10.1017/S0022112098008623
[6] Ching, C. Y., Fernando, H. J. S. & Noh, Y.1993Interaction of a negatively buoyant line plume with a density interface. Dyn. Atmos. Oceans19, 367-388.10.1016/0377-0265(93)90042-6 · doi:10.1016/0377-0265(93)90042-6
[7] Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J. & Brooks, N. H.1979Mixing in Inland and Coastal Waters. Academic.
[8] Hanna, S. R., Briggs, G. A. & Hosker, R. P.Jr.1983Handbook on Atmospheric Diffusion, vol. 17. US Department of Energy.
[9] Hunt, G. R. & Kaye, N. B.2005Lazy plumes. J. Fluid Mech.533, 329-338.10.1017/S002211200500457XS002211200500457X2263312 · Zbl 1074.76057 · doi:10.1017/S002211200500457X
[10] Hunt, G. R. & van den Bremer, T. S.2010Classical plume theory: 1937-2010 and beyond. IMA J. Appl. Maths76, 424-448.10.1093/imamat/hxq056 · Zbl 1432.76006 · doi:10.1093/imamat/hxq056
[11] Joint Analysis Group2011 Deepwater Horizon Oil Spill: Review of R/V Brooks McCall data to examine subsurface oil. NOAA Tech. Rep. NOS OR&R 24.
[12] Kaminski, E., Tait, S. & Carazzo, G.2005Turbulent entrainment in jets with arbitrary buoyancy. J. Fluid Mech.526, 361-376.10.1017/S0022112004003209S00221120040032092261437 · Zbl 1065.76004 · doi:10.1017/S0022112004003209
[13] Kamke, E.1944Differentialgleischungen: Lösungensmethoden und Lösungen. Chelsea. · Zbl 0061.16604
[14] Kaye, N. B. & Scase, M. M.2011Straight-sided solutions to classical and modified plume flux equations. J. Fluid Mech.680, 564-573.10.1017/jfm.2011.214S002211201100214X2819571 · Zbl 1241.76162 · doi:10.1017/jfm.2011.214
[15] MacIntyre, S., Alldredge, A. L. & Gotschalk, C. C.1995Accumulation of marine snow at density discontinuities in the water column. Limnol. Oceanogr.40, 449-468.10.4319/lo.1995.40.3.0449 · doi:10.4319/lo.1995.40.3.0449
[16] Mariano, A. J., Kourafalou, V. H., Srinivasan, A., Kang, H., Halliwell, G. R., Ryan, E. H. & Roffer, M.2011On the modeling of the 2010 Gulf of Mexico oil spill. Dyn. Atmos. Oceans52, 322-340.10.1016/j.dynatmoce.2011.06.001 · doi:10.1016/j.dynatmoce.2011.06.001
[17] Mehaddi, R., Candelier, F. & Vauquelin, O.2013Naturally bounded plumes. J. Fluid Mech.717, 472-483.10.1017/jfm.2012.587S00221120120058733018616 · Zbl 1284.76200 · doi:10.1017/jfm.2012.587
[18] Morton, B. R., Taylor, G. I. & Turner, J. S.1956Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A234, 1-23.10.1098/rspa.1956.0011 · Zbl 0074.45402 · doi:10.1098/rspa.1956.0011
[19] Noh, Y., Fernando, H. S. & Ching, C. Y.1992Flows induced by the impingement of a two-dimensional thermal on a density interface. J. Phys. Oceanogr.22, 1207-1220.10.1175/1520-0485(1992)022<1207:FIBTIO>2.0.CO;2 · doi:10.1175/1520-0485(1992)022<1207:FIBTIO>2.0.CO;2
[20] Priestley, C. H. B. & Ball, F. K.1955Continuous convection from an isolated source of heat. Q. J. R. Meteorol. Soc.81, 144-157.10.1002/qj.49708134803 · doi:10.1002/qj.49708134803
[21] Scase, M. M., Caulfield, C. P. & Dalziel, S. B.2006Boussinesq plumes and jets with decreasing source strengths in stratified environments. J. Fluid Mech.563, 463-472.10.1017/S0022112006000784S00221120060007842265744 · Zbl 1177.76036 · doi:10.1017/S0022112006000784
[22] Wallace, R. & Sheff, B.1987Two dimensional buoyant jets in two layer ambient fluid. J. Hydraul. Engng ASCE113, 992-1005.10.1061/(ASCE)0733-9429(1987)113:8(992) · doi:10.1061/(ASCE)0733-9429(1987)113:8(992)
[23] Wang, H. & Law, A. W.-K.2002Second-order integral model for a round turbulent buoyant jet. J. Fluid Mech.459, 397-428.1909215 · Zbl 0991.76509
[24] Woods, A. W.2010Turbulent plumes in nature. Annu. Rev. Fluid Mech.42, 391-412.10.1146/annurev-fluid-121108-145430 · doi:10.1146/annurev-fluid-121108-145430
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.