×

Modeling public health campaigns for sexually transmitted infections via optimal and feedback control. (English) Zbl 1427.92058

Summary: Control of sexually transmitted infections (STIs) poses important challenges to public health authorities. Obstacles for STIs’ control include low priority in public health programs and disease transmission mechanisms. This work uses a compartmental pair model to explore different public health strategies on the evolution of STIs. Optimal control and feedback control are used to model realistic strategies for reducing the prevalence of these infections. Feedback control is proposed to model the reaction of public health authorities relative to an alert level. Optimal control is used to model the optimization of available resources for implementing strategies. Numerical simulations are performed using trichomoniasis, gonorrhea, chlamydia and human papillomavirus (HPV) as study cases. HPV is non-curable, and it is analyzed only under transmission control such as condom promotion campaigns. Trichomoniasis, gonorrhea and chlamydia are curable STIs that are modeled here additionally under treatment control. Increased cost-effectiveness ratio is employed as a criterion to measure control strategies performance. The features and drawbacks of control strategies under the pair formation process are discussed.

MSC:

92C60 Medical epidemiology
49N90 Applications of optimal control and differential games
93B52 Feedback control
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agusto FB, ELmojtaba IM (2017) Optimal control and cost-effective analysis of malaria/visceral leishmaniasis co-infection. PLoS ONE 12(2):e0171102. https://doi.org/10.1371/journal.pone.0171102 · doi:10.1371/journal.pone.0171102
[2] Berhe HW, Makinde OD, Theuri DM (2018) Optimal control and cost-effectiveness analysis for dysentery epidemic model. Appl Math Inf Sci 12(6):1183-1195. https://doi.org/10.18576/amis/120613 · doi:10.18576/amis/120613
[3] Brauer F, Castillo-Chavez C (2012) Mathematical models in population biology and epidemiology. Springer, New York · Zbl 1302.92001 · doi:10.1007/978-1-4614-1686-9
[4] Camacho A, Jerez S (2019) Bone metastasis treatment modeling via optimal control. J Math Biol 78(1-2):497-526. https://doi.org/10.1007/s00285-018-1281-3 · Zbl 1410.37070 · doi:10.1007/s00285-018-1281-3
[5] Cape JD, Beca JM, Hoch JS (2013) Introduction to cost-effectiveness analysis for clinicians. Univ Tor Med J 90(3):103-105
[6] CDC (2013) Incidence, prevalence, and cost of sexually transmitted infections in the United States. http://www.cdc.gov/std/stats/sti-estimates-fact-sheet-feb-2013.pdf. Accessed 12 Dec 2018
[7] Fleming WH, Rishel RW (1975) Deterministic and stochastic optimal control. Springer, Berlin · Zbl 0323.49001 · doi:10.1007/978-1-4612-6380-7
[8] Gaff H, Schaefer E (2009) Optimal control applied to vaccination and treatment strategies for various epidemiological models. Math Biosci Eng 6(3):469-492. https://doi.org/10.3934/mbe.2009.6.469 · Zbl 1169.49018 · doi:10.3934/mbe.2009.6.469
[9] Gerbase AC, Rowley JT, Mertens TE (1998) Global epidemiology of sexually transmitted diseases. Lancet 351:S2-S4. https://doi.org/10.1016/S0140-6736(98)90001-0 · doi:10.1016/S0140-6736(98)90001-0
[10] Gumel AB, Lubuma JM-S, Sharomi O, Terefe YA (2018) Mathematics of a sexstructured model for syphilis transmission dynamics. Math Methods Appl Sci 41(18):8488-8513. https://doi.org/10.1002/mma.4734 · Zbl 1406.34041 · doi:10.1002/mma.4734
[11] Heijne JC, Althaus CL, Herzog SA, Kretzschmar M, Low N (2011) The role of reinfection and partner notification in the efficacy of Chlamydia screening programs. J Infect Dis 203(3):372-377. https://doi.org/10.1093/infdis/jiq050 · doi:10.1093/infdis/jiq050
[12] Heijne JC, Herzog SA, Althaus CL, Low N, Kretzschmar M (2013) Case and partnership reproduction numbers for a curable sexually transmitted infection. J Theor Biol 331:38-47. https://doi.org/10.1016/j.jtbi.2013.04.010 · Zbl 1330.92127 · doi:10.1016/j.jtbi.2013.04.010
[13] Johnson LF, Geffen N (2016) A comparison of two mathematical modeling frameworks for evaluating sexually transmitted infection epidemiology. Sex Transm Dis 43(3):139-146. https://doi.org/10.1097/OLQ.0000000000000412 · doi:10.1097/OLQ.0000000000000412
[14] Johnson AM, Mercer CH, Erens B, Copas AJ, McManus S, Wellings K, Purdon S (2001) Sexual behaviour in Britain: partnerships, practices, and HIV risk behaviours. Lancet 358(9296):1835-1842. https://doi.org/10.1016/S0140-6736(01)06883-0 · doi:10.1016/S0140-6736(01)06883-0
[15] Juckett G, Hartman-Adams H (2010) Human papillomavirus: clinical manifestations and prevention. Am Fam Physician 82(10):1209-1213
[16] Kretzschmar M, Dietz K (1998) The effect of pair formation and variable infectivity on the spread of an infection without recovery. Math Biosci 148(1):83-113. https://doi.org/10.1016/S0025-5564(97)10008-6 · Zbl 1002.92557 · doi:10.1016/S0025-5564(97)10008-6
[17] Kretzschmar M, Heijne JC (2017) Pair formation models for sexually transmitted infections: a primer. Infect Dis Model 2(3):368-378. https://doi.org/10.1016/j.idm.2017.07.002 · doi:10.1016/j.idm.2017.07.002
[18] Lenhart S, Workman JT (2007) Optimal control applied to biological models. CRC Press, Boca Raton · Zbl 1291.92010
[19] Malik T, Imran M, Jayaraman R (2016) Optimal control with multiple human papillomavirus vaccines. J Theor Biol 393:179-193. https://doi.org/10.1016/j.jtbi.2016.01.004 · Zbl 1343.92496 · doi:10.1016/j.jtbi.2016.01.004
[20] Milwid RM, Frascoli F, Steben M, Heffernan JM (2018) HPV screening and vaccination strategies in an unscreened population: a mathematical modeling study. Bull Math Biol. https://doi.org/10.1007/s11538-018-0425-3 · Zbl 1430.92046 · doi:10.1007/s11538-018-0425-3
[21] Momoh AA, Fügenschuh A (2018) Optimal control of intervention strategies and cost effectiveness analysis for a Zika virus model. Oper Res Health Care 18:99-111. https://doi.org/10.1016/j.orhc.2017.08.004 · doi:10.1016/j.orhc.2017.08.004
[22] Muller H, Bauch C (2010) When do sexual partnerships need to be accounted for in transmission models of human papillomavirus? Int J Environ Res Public Health 7(2):635-650. https://doi.org/10.3390/ijerph7020635 · doi:10.3390/ijerph7020635
[23] Nandi SK, Jana S, Mandal M, Kar TK (2018) Mathematical analysis of an epidemic system in the presence of optimal control and population dispersal. Biophys Rev Lett 13(01):1-17. https://doi.org/10.1142/S1793048018500017 · doi:10.1142/S1793048018500017
[24] Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, Temmerman M (2015) Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS ONE 10(12):e0143304. https://doi.org/10.1371/journal.pone.0143304 · doi:10.1371/journal.pone.0143304
[25] Okosun KO, Ouifki R, Marcus N (2011) Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity. Biosystems 106(2-3):136-145. https://doi.org/10.1016/j.biosystems.2011.07.006 · doi:10.1016/j.biosystems.2011.07.006
[26] Otieno G, Koske J, Mutiso J (2016) Cost effectiveness analysis of optimal malaria control strategies in Kenya. Mathematics 4(1):14. https://doi.org/10.3390/math4010014 · Zbl 1376.92069 · doi:10.3390/math4010014
[27] Owusu-Edusei K Jr, Chesson HW, Gift TL, Tao G, Mahajan R, Ocfemia MCB, Kent CK (2013) The estimated direct medical cost of selected sexually transmitted infections in the United States. Sex Transm Dis 40(3):197-201. https://doi.org/10.1097/OLQ.0b013e318285c6d2 · doi:10.1097/OLQ.0b013e318285c6d2
[28] Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF (1965) The mathematical theory of optimal processes. Interscience, Geneva · Zbl 0102.31901
[29] Rodrigues HS, Monteiro MTT, Torres DFM (2014a) Vaccination models and optimal control strategies to dengue. Math Biosci 247:1-12. https://doi.org/10.1016/j.mbs.2013.10.006 · Zbl 1282.92022 · doi:10.1016/j.mbs.2013.10.006
[30] Rodrigues P, Silva CJ, Torres DFM (2014b) Cost-effectiveness analysis of optimal control measures for tuberculosis. Bull Math Biol 76(10):2627-2645. https://doi.org/10.1007/s11538-014-0028-6 · Zbl 1330.92133 · doi:10.1007/s11538-014-0028-6
[31] Saldaña F, Barradas I (2019) The role of behavioral changes and prompt treatment in the control of STIs. Infect Dis Model 4:1-10. https://doi.org/10.1016/j.idm.2018.12.001 · doi:10.1016/j.idm.2018.12.001
[32] Sepulveda LS, Vasilieva O (2016) Optimal control approach to dengue reduction and prevention in Cali, Colombia. Math Meth Appl Sci 39(18):5475-5496. https://doi.org/10.1002/mma.3932 · Zbl 1353.92100 · doi:10.1002/mma.3932
[33] Sharomi O, Malik T (2017) Optimal control in epidemiology. Ann Oper Res 251(1-2):55-71. https://doi.org/10.1007/s10479-015-1834-4 · Zbl 1373.92140 · doi:10.1007/s10479-015-1834-4
[34] Tilahun GT, Makinde OD, Malonza D (2018) Co-dynamics of pneumonia and typhoid fever diseases with cost effective optimal control analysis. Appl Math Comput 316:438-459. https://doi.org/10.1016/j.amc.2017.07.063 · Zbl 1426.92086 · doi:10.1016/j.amc.2017.07.063
[35] Unemo M, Bradshaw CS, Hocking JS, de Vries HJ, Francis SC, Mabey D, Peeling RW (2017) Sexually transmitted infections: challenges ahead. Lancet Infect Dis 17(8):e235-e279. https://doi.org/10.1016/S1473-3099(17)30310-9 · doi:10.1016/S1473-3099(17)30310-9
[36] Villavicencio Pulido G, Barradas I, Luna B (2017) Backward bifurcation for some general recovery functions. Math Methods Appl Sci 40(5):1505-1515. https://doi.org/10.1002/mma.4074 · Zbl 1360.92118 · doi:10.1002/mma.4074
[37] Wang W (2006) Backward bifurcation of an epidemic model with treatment. Math Biosci 201(1-2):58-71. https://doi.org/10.1016/j.mbs.2005.12.022 · Zbl 1093.92054 · doi:10.1016/j.mbs.2005.12.022
[38] World Health Organization (2012) Global incidence and prevalence of selected curable sexually transmitted infections-2008. World Health Organization, Geneva
[39] Zhang X, Liu X (2008) Backward bifurcation of an epidemic model with saturated treatment function. J Math Anal Appl 348(1):433-443. https://doi.org/10.1016/j.jmaa.2008.07.042 · Zbl 1144.92038 · doi:10.1016/j.jmaa.2008.07.042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.