×

Multidisciplinary pattern recognition applications: a review. (English) Zbl 1478.68314

Summary: Pattern recognition (PR) is the study of how machines can examine the environment, learn to distinguish patterns of interest from their background, and make reliable and feasible decisions regarding the categories of the patterns. However, even after almost 70 years of research, the design of an application based on pattern recognizer remains an ambiguous goal. Moreover, currently, there are huge volumes of data that must be dealt with, which include image, video, text and web documents; DNA; microarray gene data; etc. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical and machine learning approaches have been most comprehensively studied and employed in practice. Recently, deep learning techniques and methods have been receiving increasing attention. The main objective of this review is to summarize PR applications, departing from the major algorithms used for their design. The PR approaches are subdivided into three main methods: machine learning, statistical, and deep learning. In order to evidence the multidisciplinary aspects of PR applications, attention has been focused on latest PR methods applied to five fields of research: biomedical and biology, retail, surveillance, social media intelligence, and digital cultural heritage. In this paper, we discuss in detail the recent advances of PR approaches and propose the main applications within each field. We also present challenges and benchmarks in terms of advantages and disadvantages of the selected method in each field. A wide set of examples of applications in various domains are also provided, along with the specific method applied.

MSC:

68T10 Pattern recognition, speech recognition
62M05 Markov processes: estimation; hidden Markov models
68T05 Learning and adaptive systems in artificial intelligence
68T07 Artificial neural networks and deep learning
68-02 Research exposition (monographs, survey articles) pertaining to computer science
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Watanabe, S., Pattern Recognition: Human and Mechanical (1985), John Wiley & Sons, Inc.
[2] Duda, R. O.; Hart, P. E., Pattern Classification and Scene Analysis, volume 3 (1973), Wiley New York · Zbl 0277.68056
[3] Jain, A. K.; Duin, R. P.W.; Mao, J., Statistical pattern recognition: A review, IEEE Trans. Pattern Anal. Mach. Intell., 22, 4-37 (2000)
[4] Pavlidis, T., Shape description by region analysis, (Structural Pattern Recognition (1977), Springer), 216-257
[5] Gonzalez, R. C.; Thomason, M. G., Syntactic Pattern Recognition: An Introduction (1978), Addison-Wesley Publishing Company: Addison-Wesley Publishing Company Reading, MA · Zbl 0383.68065
[6] Fukunaga, K., Introduction to Statistical Pattern Recognition (2013), Academic press
[7] Schalkoff, R. J., Pattern Recognition (1992), Wiley Online Library
[8] Gorripotu, T. S.; Gopi, S.; Samalla, H.; Prasanna, A.; Samira, B., Applications of computational intelligence techniques for automatic generation control problem—A short review from 2010 to 2018, (Computational Intelligence in Pattern Recognition (2020), Springer), 563-578
[9] Sharif, M. I.; Li, J. P.; Naz, J.; Rashid, I., A comprehensive review on multi-organs tumor detection based on machine learning, Pattern Recognit. Lett., 131, 30-37 (2020)
[10] Calvaresi, D.; Cesarini, D.; Sernani, P.; Marinoni, M.; Dragoni, A. F.; Sturm, A., Exploring the ambient assisted living domain: a systematic review, J. Ambient Intell. Humaniz. Comput., 8, 239-257 (2017)
[11] Kitchenham, B.; Brereton, O. P.; Budgen, D.; Turner, M.; Bailey, J.; Linkman, S., Systematic literature reviews in software engineering-a systematic literature review, Inf. Softw. Technol., 51, 7-15 (2009)
[12] Cortes, C.; Vapnik, V., Support-vector networks, Mach. Learn., 20, 273-297 (1995) · Zbl 0831.68098
[13] Vladimir, V. N.; Vapnik, V., The Nature of Statistical Learning Theory (1995), Springer Heidelberg · Zbl 0833.62008
[14] Boser, B. E.; Guyon, I. M.; Vapnik, V. N., A training algorithm for optimal margin classifiers, (Proceedings of the Fifth Annual Workshop on Computational Learning Theory (1992), ACM), 144-152
[15] Breiman, L., Random forests, Mach. Learn., 45, 5-32 (2001) · Zbl 1007.68152
[16] Quinlan, J., C4. 5: Programs for Machine Learning (2014), Elsevier
[17] Demuth, H. B.; Beale, M. H.; De Jess, O.; Hagan, M. T., Neural Network Design (2014), Martin Hagan
[18] Bø, T. H.; Dysvik, B.; Jonassen, I., LSimpute: accurate estimation of missing values in microarray data with least squares methods, Nucleic Acids Res., 32, e34 (2004)
[19] Rish, I., An empirical study of the naive Bayes classifier, (IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, volume 3 (2001), IBM New York), 41-46
[20] Lippmann, R., An introduction to computing with neural nets, IEEE ASSP Mag., 4, 4-22 (1987)
[21] Kotsiantis, S.; Pintelas, P., Recent advances in clustering: A brief survey, WSEAS Trans. Inf. Sci. Appl., 1, 73-81 (2004)
[22] Jain, A. K.; Murty, M.; Flynn, P. J., Data clustering: a review, ACM Comput. Surv., 31, 264-323 (1999)
[23] Xie, X. L.; Beni, G., A validity measure for fuzzy clustering, IEEE Trans. Pattern Anal. Mach. Intell., 13, 841-847 (1991)
[24] Sato, M.; Sato, Y.; Jain, L. C.; Kacprzyk, J., Fuzzy Clustering Models and Applications (1997), Physica-Verlag · Zbl 0892.62033
[25] McKachlan, G.; Krishnan, T., The EM Algorithm and Extensions (1997), John Eiley & Sons · Zbl 0882.62012
[26] Corpet, F., Multiple sequence alignment with hierarchical clustering, Nucleic Acids Res., 16, 10881-10890 (1988)
[27] Murtagh, F.; Contreras, P., Algorithms for hierarchical clustering: an overview, II, Wiley Interdiscip. Rev. Data Min. Knowl. Discov., 7 (2017)
[28] Liu, A.-A.; Su, Y.-T.; Nie, W.-Z.; Kankanhalli, M., Hierarchical clustering multi-task learning for joint human action grouping and recognition, IEEE Trans. Pattern Anal. Mach. Intell., 39, 102-114 (2017)
[29] Zhang, T.; Ramakrishnan, R.; Livny, M., BIRCH: an efficient data clustering method for very large databases, (ACM Sigmod Record, volume 25 (1996), ACM), 103-114
[30] Guha, S.; Rastogi, R.; Shim, K., Cure: an efficient clustering algorithm for large databases, Inf. Syst., 26, 35-58 (2001) · Zbl 1006.68661
[31] Karypis, G.; Han, E.-H.; Kumar, V., Chameleon: Hierarchical clustering using dynamic modeling, Computer, 32, 68-75 (1999)
[32] Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X., A density-based algorithm for discovering clusters in large spatial databases with noise, (Kdd, vol. 96 (1996)), 226-231
[33] Wang, W.; Yang, J.; Muntz, R., STING: A statistical information grid approach to spatial data mining, (VLDB, vol. 97 (1997)), 186-195
[34] Sheikholeslami, G.; Chatterjee, S.; Zhang, A., Wavecluster: A multi-resolution clustering approach for very large spatial databases, (VLDB, vol. 98 (1998)), 428-439
[35] Agrawal, R.; Gehrke, J.; Gunopulos, D.; Raghavan, P., Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications, volume 27 (1998), ACM
[36] Fayyad, U. M.; Piatetsky -Shapiro, G.; Smyth, P.; Uthurusamy, R., Advances in Knowledge Discovery and Data Mining, volume 21 (1996), AAAI press Menlo Park
[37] Peña, J. M.; Lozano, J. A.; Larrañaga, P., Learning recursive Bayesian multinets for data clustering by means of constructive induction, Mach. Learn., 47, 63-89 (2002) · Zbl 1012.68153
[38] Jensen, V., Introduction to Bayesian Networks Springer-Verlag New York (1996), Inc. Secaucus, NJ, USA
[39] Kohonen, T., Selfrorganizing Maps (1997), Springer—Veriag: Springer—Veriag Berlin · Zbl 0866.68085
[40] A. Strehl, J. Ghosh, Cluster ensembles-a knowledge reuse framework for combining partitionings, in: Aaai/Iaai, 2002, pp. 93-99.
[41] Das, K.; Behera, R. N., A Survey on Machine Learning: Concept, Algorithms and Applications (2017)
[42] Wold, S.; Esbensen, K.; Geladi, P., Principal component analysis, Chemometr. Intell. Lab. Syst., 2, 37-52 (1987)
[43] Izenman, A. J., Linear discriminant analysis, (Modern Multivariate Statistical Techniques (2013), Springer), 237-280
[44] Blum, A. L.; Langley, P., Selection of relevant features and examples in machine learning, Artif. Intell., 97, 245-271 (1997) · Zbl 0904.68142
[45] Van der Aalst, W. M., Data mining, (Process Mining (2011), Springer), 59-91 · Zbl 1216.68016
[46] Settles, B., Active Learning Literature Survey 52, 11 (2010), University of Wisconsin: University of Wisconsin Madison
[47] Holder, L. B.; Haque, M. M.; Skinner, M. K., Machine learning for epigenetics and future medical applications, Epigenetics, 12, 505-514 (2017)
[48] Rastas, P.; Koivisto, M.; Mannila, H.; Ukkonen, E., A hidden Markov technique for haplotype reconstruction, (International Workshop on Algorithms in Bioinformatics (2005), Springer, IEEE), 140-151
[49] Brand, M.; Oliver, N.; Pentland, A., Coupled hidden Markov models for complex action recognition, (Computer Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE Computer Society Conference on (1997), IEEE), 994-999
[50] Duric, A.; Song, F., Feature selection for sentiment analysis based on content and syntax models, Decis. Support Syst., 53, 704-711 (2012)
[51] LeCun, Y.; Bengio, Y.; Hinton, G., Deep learning, Nature, 521, 436-444 (2015)
[52] Noda, K.; Yamaguchi, Y.; Nakadai, K.; Okuno, H. G.; Ogata, T., Audio-visual speech recognition using deep learning, Appl. Intell., 42, 722-737 (2015)
[53] Wu, G.; Lu, W.; Gao, G.; Zhao, C.; Liu, J., Regional deep learning model for visual tracking, Neurocomputing, 175, 310-323 (2016)
[54] Hinton, G. E.; Osindero, S.; Teh, Y.-W., A fast learning algorithm for deep belief nets, Neural Comput., 18, 1527-1554 (2006) · Zbl 1106.68094
[55] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, S. Khudanpur, Recurrent neural network based language model, in: Eleventh Annual Conference of the International Speech Communication Association, 2010.
[56] C.R. Qi, H. Su, K. Mo, L.J. Guibas, Pointnet: Deep learning on point sets for 3D classification and segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 652-660.
[57] Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y., Generative adversarial nets, (Advances in Neural Information Processing Systems (2014)), 2672-2680
[58] Krizhevsky, A.; Sutskever, I.; Hinton, G. E., Imagenet classification with deep convolutional neural networks, (Advances in Neural Information Processing Systems (2012)), 1097-1105
[59] Fukushima, K., Neocognitron: A hierarchical neural network capable of visual pattern recognition, Neural Netw., 1, 119-130 (1988)
[60] LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P., Gradient-based learning applied to document recognition, Proc. IEEE, 86, 2278-2324 (1998)
[61] Hochreiter, S.; Schmidhuber, J., Long short-term memory, Neural Comput., 9, 1735-1780 (1997)
[62] Xingjian, S.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W.-c., Convolutional LSTM network: A machine learning approach for precipitation nowcasting, (Advances in Neural Information Processing Systems (2015)), 802-810
[63] Gers, F. A.; Schraudolph, N. N.; Schmidhuber, J., Learning precise timing with LSTM recurrent networks, J. Mach. Learn. Res., 3, 115-143 (2002) · Zbl 1088.68717
[64] Zhang, K.; Hao, M.; Wang, J.; de Silva, C. W.; Fu, C., Linked dynamic graph CNN: Learning on point cloud via linking hierarchical features (2019), arXiv preprint arXiv:1904.10014
[65] Vondrick, C.; Pirsiavash, H.; Torralba, A., Generating videos with scene dynamics, (Advances in Neural Information Processing Systems (2016)), 613-621
[66] Y. Sun, Y. Wang, Z. Liu, J. Siegel, S. Sarma, Pointgrow: Autoregressively learned point cloud generation with self-attention, in: The IEEE Winter Conference on Applications of Computer Vision, 2020, pp. 61-70.
[67] Whetzel, P. L.; Noy, N. F.; Shah, N. H.; Alexander, P. R.; Nyulas, C.; Tudorache, T.; Musen, M. A., BioPortal: enhanced functionality via new web services from the national center for biomedical ontology to access and use ontologies in software applications, Nucleic Acids Res., 39, W541-W545 (2011)
[68] Schadt, E. E.; Linderman, M. D.; Sorenson, J.; Lee, L.; Nolan, G. P., Computational solutions to large-scale data management and analysis, Nature Rev. Genet., 11, 647-657 (2010)
[69] Rosenthal, A.; Mork, P.; Li, M. H.; Stanford, J.; Koester, D.; Reynolds, P., Cloud computing: a new business paradigm for biomedical information sharing, J. Biomed. Inform., 43, 342-353 (2010)
[70] Shah, N. H.; Tenenbaum, J. D., The coming age of data-driven medicine: translational bioinformatics’ next frontier, J. Am. Med. Inform. Assoc., 19, e2-e4 (2012)
[71] Troyanskaya, O.; Cantor, M.; Sherlock, G.; Brown, P.; Hastie, T.; Tibshirani, R.; Botstein, D.; Altman, R. B., Missing value estimation methods for DNA microarrays, Bioinformatics, 17, 520-525 (2001)
[72] Stekhoven, D. J.; Bühlmann, P., MissForest—non-parametric missing value imputation for mixed-type data, Bioinformatics, 28, 112-118 (2012)
[73] Wu, X.; Zhu, X.; Wu, G.-Q.; Ding, W., Data mining with big data, IEEE Trans. Knowl. Data Eng., 26, 97-107 (2014)
[74] Alipanahi, B.; Delong, A.; Weirauch, M. T.; Frey, B. J., Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning, Nature Biotechnol., 33, 831-838 (2015)
[75] Lanchantin, J.; Singh, R.; Lin, Z.; Qi, Y., Deep motif: Visualizing genomic sequence classifications (2016), arXiv preprint arXiv:1605.01133
[76] Danziger, S. A.; Baronio, R.; Ho, L.; Hall, L.; Salmon, K.; Hatfield, G. W.; Kaiser, P.; Lathrop, R. H., Predicting positive p53 cancer rescue regions using most informative positive (MIP) active learning, PLoS Comput. Biol., 5, Article e1000498 pp. (2009)
[77] Freund, Y.; Schapire, R. E., A desicion-theoretic generalization of on-line learning and an application to boosting, (European Conference on Computational Learning Theory (1995), Springer), 23-37
[78] Madabhushi, A.; Lee, G., Image Analysis and Machine Learning in Digital Pathology: Challenges and Opportunities (2016), Elsevier
[79] Min, S.; Lee, B.; Yoon, S., Deep learning in bioinformatics, Brief. Bioinform., bbw068 (2016)
[80] Greenspan, H.; van Ginneken, B.; Summers, R. M., Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique, IEEE Trans. Med. Imaging, 35, 1153-1159 (2016)
[81] Mamoshina, P.; Vieira, A.; Putin, E.; Zhavoronkov, A., Applications of deep learning in biomedicine, Mol. Pharm., 13, 1445-1454 (2016)
[82] Gillani, Z.; Akash, M. S.H.; Rahaman, M. M.; Chen, M., CompareSVM: supervised, support vector machine (SVM) inference of gene regularity networks, BMC Bioinformatics, 15, 395 (2014)
[83] Huang, B. F.; Boutros, P. C., The parameter sensitivity of random forests, BMC Bioinformatics, 17, 331 (2016)
[84] Wu, H.; Li, H.; Jiang, M.; Chen, C.; Lv, Q.; Wu, C., Identify high-quality protein structural models by enhanced-means, BioMed Res. Int., 2017 (2017)
[85] Reeb, P. D.; Bramardi, S. J.; Steibel, J. P., Assessing dissimilarity measures for sample-based hierarchical clustering of RNA sequencing data using plasmode datasets, PLoS One, 10, Article e0132310 pp. (2015)
[86] Patel, N.; Wang, J. T., Semi-supervised prediction of gene regulatory networks using machine learning algorithms, J. Biosci., 40, 731-740 (2015)
[87] Ciucci, S.; Ge, Y.; Durán, C.; Palladini, A.; Jiménez-Jiménez, V.; Martínez-Sánchez, L. M.; Wang, Y.; Sales, S.; Shevchenko, A.; Poser, S. W., Enlightening discriminative network functional modules behind principal component analysis separation in differential-omic science studies, Sci. Rep., 7 (2017)
[88] Severson, K.; Monian, B.; Christopher Love, J.; Braatz, R. D., A method for learning a sparse classifier in the presence of missing data for high-dimensional biological datasets, Bioinformatics (2017)
[89] Franken, H.; Lehmann, R.; Häring, H.-U.; Fritsche, A.; Stefan, N.; Zell, A., Wrapper-and ensemble-based feature subset selection methods for biomarker discovery in targeted metabolomics, (IAPR International Conference on Pattern Recognition in Bioinformatics (2011), Springer), 121-132
[90] Padmanabhan, R. K.; Somasundar, V. H.; Griffith, S. D.; Zhu, J.; Samoyedny, D.; Tan, K. S.; Hu, J.; Liao, X.; Carin, L.; Yoon, S. S., An active learning approach for rapid characterization of endothelial cells in human tumors, PLoS One, 9, Article e90495 pp. (2014)
[91] Cho, H.; Berger, B.; Peng, J., Reconstructing causal biological networks through active learning, PLoS One, 11, Article e0150611 pp. (2016)
[92] Lin, W.; Xu, D., Imbalanced multi-label learning for identifying antimicrobial peptides and their functional types, Bioinformatics, 32, 3745-3752 (2016)
[93] Kelchtermans, P.; Bittremieux, W.; Grave, K.; Degroeve, S.; Ramon, J.; Laukens, K.; Valkenborg, D.; Barsnes, H.; Martens, L., Machine learning applications in proteomics research: How the past can boost the future, Proteomics, 14, 353-366 (2014)
[94] Lan, M.; Tan, C. L.; Su, J., Feature generation and representations for protein-protein interaction classification, J. Biomed. Inform., 42, 866-872 (2009)
[95] Wang, X.; Zheng, B.; Li, S.; Mulvihill, J. J.; Wood, M. C.; Liu, H., Automated classification of metaphase chromosomes: optimization of an adaptive computerized scheme, J. Biomed. Inform., 42, 22-31 (2009)
[96] Díaz, G.; González, F. A.; Romero, E., A semi-automatic method for quantification and classification of erythrocytes infected with malaria parasites in microscopic images, J. Biomed. Inform., 42, 296-307 (2009)
[97] Wang, H.-Q.; Wong, H.-S.; Zhu, H.; Yip, T. T., A neural network-based biomarker association information extraction approach for cancer classification, J. Biomed. Inform., 42, 654-666 (2009)
[98] Mazurowski, M. A.; Lo, J. Y.; Harrawood, B. P.; Tourassi, G. D., Mutual information-based template matching scheme for detection of breast masses: From mammography to digital breast tomosynthesis, J. Biomed. Inform., 44, 815-823 (2011)
[99] Kostopoulos, S. A.; Asvestas, P. A.; Kalatzis, I. K.; Sakellaropoulos, G. C.; Sakkis, T. H.; Cavouras, D. A.; Glotsos, D. T., Adaptable pattern recognition system for discriminating melanocytic nevi from malignant melanomas using plain photography images from different image databases, Int. J. Med. Inform. (2017)
[100] Llobet, R.; Pérez-Cortés, J. C.; Toselli, A. H.; Juan, A., Computer-aided detection of prostate cancer, Int. J. Med. Inform., 76, 547-556 (2007)
[101] Mallik, J.; Samal, A.; Gardner, S. L., A content based image retrieval system for a biological specimen collection, Comput. Vis. Image Underst., 114, 745-757 (2010)
[102] de San Roman, P. P.; Benois-Pineau, J.; Domenger, J.-P.; Paclet, F.; Cataert, D.; de Rugy, A., Saliency driven object recognition in egocentric videos with deep CNN: toward application in assistance to neuroprostheses, Comput. Vis. Image Underst. (2017)
[103] Blaiotta, C.; Cardoso, M.; Ashburner, J., Variational inference for medical image segmentation, Comput. Vis. Image Underst., 151, 14-28 (2016)
[104] Moccia, S.; Penza, V.; Vanone, G. O.; De Momi, E.; Mattos, L. S., Automatic workflow for narrow-band laryngeal video stitching, (2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC (2016), IEEE), 1188-1191
[105] Moccia, S.; Foti, S.; Routray, A.; Prudente, F.; Perin, A.; Sekula, R. F.; Mattos, L. S.; Balzer, J. R.; Fellows-Mayle, W.; De Momi, E., Toward improving safety in neurosurgery with an active handheld instrument, Ann. Biomed. Eng., 46, 1450-1464 (2018)
[106] Moccia, S.; Vanone, G. O.; De Momi, E.; Laborai, A.; Guastini, L.; Peretti, G.; Mattos, L. S., Learning-based classification of informative laryngoscopic frames, Comput. Methods Programs Biomed., 158, 21-30 (2018)
[107] Moccia, S.; Mattos, L. S.; Patrini, I.; Ruperti, M.; Poté, N.; Dondero, F.; Cauchy, F.; Sepulveda, A.; Soubrane, O.; De Momi, E., Computer-assisted liver graft steatosis assessment via learning-based texture analysis, Int. J. Comput. Assist. Radiol. Surg., 13, 1357-1367 (2018)
[108] Colleoni, E.; Moccia, S.; Du, X.; De Momi, E.; Stoyanov, D., Deep learning based robotic tool detection and articulation estimation with spatio-temporal layers, IEEE Robot. Autom. Lett., 4, 2714-2721 (2019)
[109] Moccia, S.; Migliorelli, L.; Pietrini, R.; Frontoni, E., Preterm infants’ limb-pose estimation from depth images using convolutional neural networks, (2019 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, CIBCB (2019), IEEE), 1-7
[110] Cambria, E., Affective computing and sentiment analysis, IEEE Intell. Syst., 31, 102-107 (2016)
[111] Strapparava, C.; Valitutti, A., Wordnet affect: an affective extension of WordNet, (LREC, volume 4 (2004), Citeseer), 1083-1086
[112] A. Esuli, SentiWordNet: A publicly available lexical resource for opinion mining, in: Proceedings of Language Resources And Evaluation, LREC, Genoa, Italy, 2006, pp. 24-26.
[113] Cambria, E.; White, B., Jumping NLP curves: a review of natural language processing research [review article], IEEE Comput. Intell. Mag., 9, 48-57 (2014)
[114] Li, Y.-M.; Li, T.-Y., Deriving market intelligence from microblogs, Decis. Support Syst., 55, 206-217 (2013)
[115] Kim, Y., Convolutional neural networks for sentence classification (2014), arXiv preprint arXiv:1408.5882
[116] Mesnil, G.; Mikolov, T.; Ranzato, M.; Bengio, Y., Ensemble of generative and discriminative techniques for sentiment analysis of movie reviews (2014), arXiv preprint arXiv:1412.5335
[117] Chen, T.; Borth, D.; Darrell, T.; Chang, S.-F., Deepsentibank: Visual sentiment concept classification with deep convolutional neural networks (2014), arXiv preprint arXiv:1410.8586
[118] Xu, C.; Cetintas, S.; Lee, K.-C.; Li, L.-J., Visual sentiment prediction with deep convolutional neural networks (2014), arXiv preprint arXiv:1411.5731
[119] Cambria, E.; Poria, S.; Bisio, F.; Bajpai, R.; Chaturvedi, I., The CLSA model: A novel framework for concept-level sentiment analysis, (International Conference on Intelligent Text Processing and Computational Linguistics (2015), Springer), 3-22
[120] You, Q.; Luo, J.; Jin, H.; Yang, J., Joint visual-textual sentiment analysis with deep neural networks, (Proceedings of the 23rd ACM International Conference on Multimedia (2015), ACM), 1071-1074
[121] Yu, Y.; Lin, H.; Meng, J.; Zhao, Z., Visual and textual sentiment analysis of a microblog using deep convolutional neural networks, Algorithms, 9, 41 (2016) · Zbl 07042350
[122] Kang, H.; Yoo, S. J.; Han, D., Senti-lexicon and improved Naïve Bayes algorithms for sentiment analysis of restaurant reviews, Expert Syst. Appl., 39, 6000-6010 (2012)
[123] Xianghua, F.; Guo, L.; Yanyan, G.; Zhiqiang, W., Multi-aspect sentiment analysis for Chinese online social reviews based on topic modeling and HowNet lexicon, Knowl.-Based Syst., 37, 186-195 (2013)
[124] Choi, K.; Toh, K.-A.; Byun, H., Incremental face recognition for large-scale social network services, Pattern Recognit., 45, 2868-2883 (2012)
[125] X. Glorot, A. Bordes, Y. Bengio, Domain adaptation for large-scale sentiment classification: A deep learning approach, in: Proceedings of the 28th International Conference on Machine Learning, ICML-11, 2011, pp. 513-520.
[126] R. Socher, A. Perelygin, J. Wu, J. Chuang, C.D. Manning, A. Ng, C. Potts, Recursive deep models for semantic compositionality over a sentiment treebank, in: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 2013, pp. 1631-1642.
[127] S. Poria, E. Cambria, A. Gelbukh, Deep convolutional neural network textual features and multiple kernel learning for utterance-level multimodal sentiment analysis, in: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015, pp. 2539-2544.
[128] Boiy, E.; Moens, M.-F., A machine learning approach to sentiment analysis in multilingual web texts, Inf. Retr., 12, 526-558 (2009)
[129] Read, J., Using emoticons to reduce dependency in machine learning techniques for sentiment classification, (Proceedings of the ACL Student Research Workshop (2005), Association for Computational Linguistics), 43-48
[130] Becker, H.; Naaman, M.; Gravano, L., Learning similarity metrics for event identification in social media, (Proceedings of the Third ACM International Conference on Web Search and Data Mining (2010), ACM), 291-300
[131] Salathé, M.; Khandelwal, S., Assessing vaccination sentiments with online social media: implications for infectious disease dynamics and control, PLoS Comput. Biol., 7, Article e1002199 pp. (2011)
[132] Schwartz, H. A.; Eichstaedt, J. C.; Kern, M. L.; Dziurzynski, L.; Ramones, S. M.; Agrawal, M.; Shah, A.; Kosinski, M.; Stillwell, D.; Seligman, M. E., Personality, gender, and age in the language of social media: The open-vocabulary approach, PLoS One, 8, Article e73791 pp. (2013)
[133] Ye, Q.; Zhang, Z.; Law, R., Sentiment classification of online reviews to travel destinations by supervised machine learning approaches, Expert Syst. Appl., 36, 6527-6535 (2009)
[134] Wang, X., Intelligent multi-camera video surveillance: A review, Pattern Recognit. Lett., 34, 3-19 (2013)
[135] Liciotti, D.; Paolanti, M.; Frontoni, E.; Zingaretti, P., People detection and tracking from an RGB-D camera in top-view configuration: review of challenges and applications, (International Conference on Image Analysis and Processing (2017), Springer), 207-218
[136] Vezzani, R.; Baltieri, D.; Cucchiara, R., People reidentification in surveillance and forensics: A survey, ACM Comput. Surv., 46, 29 (2013)
[137] McKenzie, K.; Campbell, M. A.; Scott, D. A.; Discoll, T. R.; Harrison, J. E.; McClure, R. J., Identifying work related injuries: comparison of methods for interrogating text fields, BMC Med. Inform. Decis. Mak., 10, 19 (2010)
[138] Albusac, J.; Castro-Schez, J. J.; López-López, L. M.; Vallejo, D.; Jimenez-Linares, L., A supervised learning approach to automate the acquisition of knowledge in surveillance systems, Signal Process., 89, 2400-2414 (2009) · Zbl 1197.94018
[139] Sillito, R. R.; Fisher, R. B., Semi-supervised learning for anomalous trajectory detection, (BMVC, vol. 27 (2008)), 1025-1044
[140] Makris, D.; Ellis, T., Learning semantic scene models from observing activity in visual surveillance, IEEE Trans. Syst. Man Cybern. B, 35, 397-408 (2005)
[141] Tamersoy, B.; Aggarwal, J. K., Robust vehicle detection for tracking in highway surveillance videos using unsupervised learning, (Advanced Video and Signal Based Surveillance, 2009. AVSS’09. Sixth IEEE International Conference on (2009), IEEE), 529-534
[142] E. Ahmed, M. Jones, T.K. Marks, An improved deep learning architecture for person re-identification, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3908-3916.
[143] Wu, X.; Liang, G.; Lee, K. K.; Xu, Y., Crowd density estimation using texture analysis and learning, (Robotics and Biomimetics, 2006. ROBIO’06. IEEE International Conference on (2006), IEEE), 214-219
[144] Ahmed, T.; Oreshkin, B.; Coates, M., Machine learning approaches to network anomaly detection, (Proceedings of the 2nd USENIX Workshop on Tackling Computer Systems Problems with Machine Learning Techniques (2007), USENIX Association), 1-6
[145] Oliver, N. M.; Rosario, B.; Pentland, A. P., A Bayesian computer vision system for modeling human interactions, IEEE Trans. Pattern Anal. Mach. Intell., 22, 831-843 (2000)
[146] Wu, G.; Wu, Y.; Jiao, L.; Wang, Y.-F.; Chang, E. Y., Multi-camera spatio-temporal fusion and biased sequence-data learning for security surveillance, (Proceedings of the Eleventh ACM International Conference on Multimedia (2003), ACM), 528-538
[147] Lin, Z.; Davis, L. S., Learning pairwise dissimilarity profiles for appearance recognition in visual surveillance, (International Symposium on Visual Computing (2008), Springer), 23-34
[148] W. Ouyang, X. Wang, Joint deep learning for pedestrian detection, in: Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 2056-2063.
[149] Baccouche, M.; Mamalet, F.; Wolf, C.; Garcia, C.; Baskurt, A., Sequential deep learning for human action recognition, (International Workshop on Human Behavior Understanding (2011), Springer), 29-39
[150] Zajdel, W.; Zivkovic, Z.; Krose, B., Keeping track of humans: Have I seen this person before?, (Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on (2005), IEEE), 2081-2086
[151] Xiong, F.; Gou, M.; Camps, O.; Sznaier, M., Person re-identification using kernel-based metric learning methods, (European Conference on Computer Vision (2014), Springer), 1-16
[152] Yi, D.; Lei, Z.; Liao, S.; Li, S. Z., Deep metric learning for person re-identification, (Pattern Recognition, ICPR, 2014 22nd International Conference on (2014), IEEE), 34-39
[153] Zhang, R.; Lin, L.; Zhang, R.; Zuo, W.; Zhang, L., Bit-scalable deep hashing with regularized similarity learning for image retrieval and person re-identification, IEEE Trans. Image Process., 24, 4766-4779 (2015) · Zbl 1408.94811
[154] Ramos, C.; Augusto, J. C.; Shapiro, D., Ambient intelligence—the next step for artificial intelligence, IEEE Intell. Syst., 23, 15-18 (2008)
[155] Sturari, M.; Liciotti, D.; Pierdicca, R.; Frontoni, E.; Mancini, A.; Contigiani, M.; Zingaretti, P., Robust and affordable retail customer profiling by vision and radio beacon sensor fusion, Pattern Recognit. Lett., 81, 30-40 (2016)
[156] Ducatel, K.; Bogdanowicz, M.; Scapolo, F.; Leijten, J.; Burgelman, J.-C., Scenarios for Ambient Intelligence in 2010 (2001), Office for official publications of the European Communities Luxembourg
[157] Frontoni, E.; Marinelli, F.; Rosetti, R.; Zingaretti, P., Shelf space re-allocation for out of stock reduction, Comput. Ind. Eng., 106, 32-40 (2017)
[158] Liciotti, D.; Zingaretti, P.; Placidi, V., An automatic analysis of shoppers behaviour using a distributed RGB-D cameras system, (Mechatronic and Embedded Systems and Applications, MESA, 2014 IEEE/ASME 10th International Conference on (2014), IEEE), 1-6
[159] Liciotti, D.; Contigiani, M.; Frontoni, E.; Mancini, A.; Zingaretti, P.; Placidi, V., Shopper analytics: A customer activity recognition system using a distributed RGB-D camera network, (International Workshop on Video Analytics for Audience Measurement in Retail and Digital Signage (2014), Springer), 146-157
[160] Frontoni, E.; Mancini, A.; Zingaretti, P.; Placidi, V., Information management for intelligent retail environment: the shelf detector system, Information, 5, 255-271 (2014)
[161] Ahmed, S. R., Applications of data mining in retail business, (Information Technology: Coding and Computing, 2004. Proceedings. ITCC 2004. International Conference on, volume 2 (2004), IEEE), 455-459
[162] Berson, A.; Smith, S. J., Building Data Mining Applications for CRM (2002), McGraw-Hill, Inc.
[163] Giraud-Carrier, C.; Povel, O., Characterising data mining software, Intell. Data Anal., 7, 181-192 (2003)
[164] Mitra, S.; Pal, S. K.; Mitra, P., Data mining in soft computing framework: a survey, IEEE Trans. Neural Netw., 13, 3-14 (2002)
[165] Swift, R. S., Accelerating Customer Relationships: Using CRM and Relationship Technologies (2001), Prentice Hall Professional
[166] Kracklauer, A. H.; Mills, D.; Seifert, D., Customer management as the origin of collaborative customer relationship management, (Collaborative Customer Relationship Management (2004), Springer), 3-6
[167] Woo, J. Y.; Bae, S. M.; Park, S. C., Visualization method for customer targeting using customer map, Expert Syst. Appl., 28, 763-772 (2005)
[168] Cheung, K.-W.; Kwok, J. T.; Law, M. H.; Tsui, K.-C., Mining customer product ratings for personalized marketing, Decis. Support Syst., 35, 231-243 (2003)
[169] Chen, M.-C.; Chiu, A.-L.; Chang, H.-H., Mining changes in customer behavior in retail marketing, Expert Syst. Appl., 28, 773-781 (2005)
[170] Drew, J. H.; Mani, D.; Betz, A. L.; Datta, P., Targeting customers with statistical and data-mining techniques, J. Serv. Res., 3, 205-219 (2001)
[171] Prinzie, A.; Van den Poel, D., Investigating purchasing-sequence patterns for financial services using Markov, MTD and MTDg models, European J. Oper. Res., 170, 710-734 (2006) · Zbl 1091.90527
[172] Aggarwal, C. C.; Procopiuc, C.; Yu, P. S., Finding localized associations in market basket data, IEEE Trans. Knowl. Data Eng., 14, 51-62 (2002)
[173] Au, W.-H.; Chan, K. C., Mining fuzzy association rules in a bank-account database, IEEE Trans. Fuzzy Syst., 11, 238-248 (2003)
[174] Ngai, E. W.; Xiu, L.; Chau, D. C., Application of data mining techniques in customer relationship management: A literature review and classification, Expert Syst. Appl., 36, 2592-2602 (2009)
[175] Mackaness, W. A.; Chaudhry, O. Z., Automatic classification of retail spaces from a large scale topographic database, Trans. GIS, 15, 291-307 (2011)
[176] Jambulingam, T.; Kathuria, R.; Doucette, W. R., Entrepreneurial orientation as a basis for classification within a service industry: the case of retail pharmacy industry, J. Oper. Manage., 23, 23-42 (2005)
[177] Kumar, A.; Kabra, G.; Mussada, E. K.; Dash, M. K.; Rana, P. S., Combined artificial bee colony algorithm and machine learning techniques for prediction of online consumer repurchase intention, Neural Comput. Appl., 1-14 (2017)
[178] Lismont, J.; Ram, S.; Baesens, B.; Lemahieu, W.; Vanthienen, J., The (pseudo-) social behavior of products in offline retail stores: predicting increase in product interpurchase time (2018)
[179] Song, Y.; Xue, Y.; Li, C.; Zhao, X.; Liu, S.; Zhuo, X.; Zhang, K.; Yan, B.; Ning, X.; Wang, Y., Online cost efficient customer recognition system for retail analytics, (Applications of Computer Vision Workshops, WACVW, 2017 IEEE Winter (2017), IEEE), 9-16
[180] Qu, T.; Zhang, J.; Chan, F. T.; Srivastava, R.; Tiwari, M.; Park, W.-Y., Demand prediction and price optimization for semi-luxury supermarket segment, Comput. Ind. Eng. (2017)
[181] Tallapragada, V. S.; Rao, N. A.; Kanapala, S., EMOMETRIC: An IoT integrated big data analytic system for real time retail customer’s emotion tracking and analysis, Int. J. Comput. Intell. Res., 13, 673-695 (2017)
[182] Abrams, E.; Gui, G.; Hortacsu, A., Finding exogenous variation in data (2017), arXiv preprint arXiv:1704.07787
[183] Ma, S.; Fildes, R., A retail store SKU promotions optimization model for category multi-period profit maximization, European J. Oper. Res., 260, 680-692 (2017) · Zbl 1403.90454
[184] Kalaiselvi, N.; Aravind, K.; Balaguru, S.; Vijayaragul, V., Retail price analytics using backpropogation neural network and sentimental analysis, (Signal Processing, Communication and Networking, ICSCN, 2017 Fourth International Conference on (2017), IEEE), 1-6
[185] Yasser, A.; Clawson, K.; Bowerman, C.; Lévêque, M., Saving cultural heritage with digital make-believe: Machine learning and digital techniques to the rescue (2017)
[186] Llamas, J.; Lerones, P. M.; Zalama, E.; Gómez-García-Bermejo, J., Applying deep learning techniques to cultural heritage images within the INCEPTION project, (Euro-Mediterranean Conference (2016), Springer), 25-32
[187] Lombardi, T. E., Classification of Style in Fine-Art Painting (2005), Pace University
[188] Arora, R. S.; Elgammal, A., Towards automated classification of fine-art painting style: A comparative study, (Pattern Recognition, ICPR, 2012 21st International Conference on (2012), IEEE), 3541-3544
[189] Barnard, K.; Duygulu, P.; Forsyth, D., Clustering art, (Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, volume 2 (2001), IEEE), II
[190] Qi, H.; Taeb, A.; Hughes, S. M., Visual stylometry using background selection and wavelet-HMT-based Fisher information distances for attribution and dating of impressionist paintings, Signal Process., 93, 541-553 (2013)
[191] Doulamis, A.; Varvarigou, T., Image analysis for artistic style identification: A powerful tool for preserving cultural heritage, (Emerging Technologies in Non-Destructive Testing V (2012), CRC Press), 71
[192] Karayev, S.; Trentacoste, M.; Han, H.; Agarwala, A.; Darrell, T.; Hertzmann, A.; Winnemoeller, H., Recognizing image style (2013), arXiv preprint arXiv:1311.3715
[193] Anwer, R. M.; Khan, F. S.; van de Weijer, J.; Laaksonen, J., Combining holistic and part-based deep representations for computational painting categorization, (Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval (2016), ACM), 339-342
[194] Grana, C.; Borghesani, D.; Cucchiara, R., Automatic segmentation of digitalized historical manuscripts, Multimedia Tools Appl., 55, 483-506 (2011)
[195] Y. Bar, N. Levy, L. Wolf, Classification of artistic styles using binarized features derived from a deep neural network, in: ECCV Workshops, 2014, pp. 71-84.
[196] A. Salvador, M. Zeppelzauer, D. Manchon-Vizuete, A. Calafell, X. Giro-i Nieto, Cultural event recognition with visual convnets and temporal models, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2015, pp. 36-44.
[197] Van Noord, N.; Hendriks, E.; Postma, E., Toward discovery of the artist’s style: Learning to recognize artists by their artworks, IEEE Signal Process. Mag., 32, 46-54 (2015)
[198] Jafarpour, S.; Polatkan, G.; Brevdo, E.; Hughes, S.; Brasoveanu, A.; Daubechies, I., Stylistic analysis of paintings usingwavelets and machine learning, (Signal Processing Conference, 2009 17th European (2009), IEEE), 1220-1224
[199] M. Tissenbaum, M. Berland, V. Kumar, Modeling visitor behavior in a game-based engineering museum exhibit with hidden Markov models, in: EDM, 2016, pp. 517-522.
[200] Polatkan, G.; Jafarpour, S.; Brasoveanu, A.; Hughes, S.; Daubechies, I., Detection of forgery in paintings using supervised learning, (Image Processing, ICIP, 2009 16th IEEE International Conference on (2009), IEEE), 2921-2924
[201] Zujovic, J.; Gandy, L.; Friedman, S.; Pardo, B.; Pappas, T. N., Classifying paintings by artistic genre: An analysis of features & classifiers, (Multimedia Signal Processing, 2009. MMSP’09. IEEE International Workshop on (2009), IEEE), 1-5
[202] Blessing, A.; Wen, K., Using Machine Learning for Identification of Art PaintingsTechnical report (2010), Stanford University
[203] Li, J.; Wang, J. Z., Studying digital imagery of ancient paintings by mixtures of stochastic models, IEEE Trans. Image Process., 13, 340-353 (2004)
[204] Grilli, E.; Özdemir, E.; Remondino, F., Application of machine and deep learning strategies for the classification of heritage point clouds, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. (2019)
[205] Malinverni, E.; Pierdicca, R.; Paolanti, M.; Martini, M.; Morbidoni, C.; Matrone, F.; Lingua, A., Deep learning for semantic segmentation of 3D point cloud, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. (2019)
[206] Pierdicca, R.; Paolanti, M.; Matrone, F.; Martini, M.; Morbidoni, C.; Malinverni, E. S.; Frontoni, E.; Lingua, A. M., Point cloud semantic segmentation using a deep learning framework for cultural heritage, Remote Sens., 12, 1005 (2020)
[207] Paolanti, M.; Romeo, L.; Martini, M.; Mancini, A.; Frontoni, E.; Zingaretti, P., Robotic retail surveying by deep learning visual and textual data, Robot. Auton. Syst., 118, 179-188 (2019)
[208] Liciotti, D.; Paolanti, M.; Frontoni, E.; Mancini, A.; Zingaretti, P., Person re-identification dataset with RGB-D camera in a top-view configuration, (International Workshop on Face and Facial Expression Recognition from Real World Videos (2016), Springer), 1-11
[209] Martini, M.; Paolanti, M.; Frontoni, E., Open-world person re-identification with RGBD camera in top-view configuration for retail applications, IEEE Access, 8, 67756-67765 (2020)
[210] Paolanti, M.; Liciotti, D.; Pietrini, R.; Mancini, A.; Frontoni, E., Modelling and forecasting customer navigation in intelligent retail environments, J. Intell. Robot. Syst. (2017)
[211] Naspetti, S.; Pierdicca, R.; Mandolesi, S.; Paolanti, M.; Frontoni, E.; Zanoli, R., Automatic analysis of eye-tracking data for augmented reality applications: A prospective outlook, (International Conference on Augmented Reality, Virtual Reality and Computer Graphics (2016), Springer), 217-230
[212] Pierdicca, R.; Paolanti, M.; Quattrini, R.; Mameli, M.; Frontoni, E., A visual attentive model for discovering patterns in eye-tracking data—A proposal in cultural heritage, Sensors, 20, 2101 (2020)
[213] Anjomshoae, S.; Najjar, A.; Calvaresi, D.; Främling, K., Explainable agents and robots: Results from a systematic literature review, (Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems (2019), International Foundation for Autonomous Agents and Multiagent Systems), 1078-1088
[214] Calvaresi, D.; Najjar, A.; Schumacher, M.; Främling, K., (Explainable, Transparent Autonomous Agents and Multi-Agent Systems: First International Workshop. Explainable, Transparent Autonomous Agents and Multi-Agent Systems: First International Workshop, EXTRAAMAS 2019, Montreal, QC, Canada, May 13-14, 2019. Explainable, Transparent Autonomous Agents and Multi-Agent Systems: First International Workshop. Explainable, Transparent Autonomous Agents and Multi-Agent Systems: First International Workshop, EXTRAAMAS 2019, Montreal, QC, Canada, May 13-14, 2019, Revised Selected Papers, vol. 11763 (2019), Springer Nature)
[215] G. Ciatto, D. Calvaresi, M.I. Schumacher, A. Omicini, An abstract framework for agent-based explanations in AI, in: Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, 2020, pp. 1816-1818.
[216] Goodman, B.; Flaxman, S., European Union regulations on algorithmic decision-making and a “right to explanation”, AI Mag., 38, 50-57 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.