×

A regularized single-phase lattice Boltzmann method for free-surface flows. (English) Zbl 1456.76089

Summary: In this paper, a lattice Boltzmann (LB) scheme for simulating free-surface flows is investigated, in which the Hermite expansion-based regularization [R. Zhang, “Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation”, Phys. Rev. E 74, No. 4, Article 046703, 7 p. (2006; doi:10.1103/PhysRevE.74.046703)] and the single-phase free-surface model [C. Körner et al., J. Stat. Phys. 121, No. 1–2, 179–196 (2005; Zbl 1108.76059)] are adopted. It is pointed out that the original free-surface model may encounter some conflicting situations when dealing with some extreme cases, such as adjacent filled/empty interface cells, isolated interface cells, and how to reconstruct distribution functions if too few non-gas cells are available in the neighbourhood region. An alternative reconstruction method based on the extrapolation and the gradient of macroscopic variables is then proposed to tackle these problems. The proposed numerical framework is validated through several test-cases, from which it is shown that the regularization can largely improve the stability of LB simulations of violent free-surface flows such as dam-break flows. In addition, the proposed reconstruction method can help further reduce the spurious pressure noises in regularized LBM. Nevertheless, a more dissipative behaviour has been observed in the viscous standing wave test-case.

MSC:

76M28 Particle methods and lattice-gas methods
76D05 Navier-Stokes equations for incompressible viscous fluids
76D33 Waves for incompressible viscous fluids

Citations:

Zbl 1108.76059
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Li, Q.; Luo, K. H.; Kang, Q.; He, Y.; Chen, Q.; Liu, Q., Lattice Boltzmann methods for multiphase flow and phase-change heat transfer, Prog. Energy Combust. Sci., 52, 62-105 (2016)
[2] Liu, H.; Kang, Q.; Leonardi, C. R.; Schmieschek, S.; Narváez, A.; Jones, B. D.; Williams, J. R.; Valocchi, A. J.; Harting, J., Multiphase lattice Boltzmann simulations for porous media applications, Comput. Geosci., 20, 4, 777-805 (2016) · Zbl 1392.76085
[3] Gunstensen, A. K.; Rothman, D. H.; Zaleski, S.; Zanetti, G., Lattice Boltzmann model of immiscible fluids, Phys. Rev. A, 43, 8, 4320 (1991)
[4] Swift, M. R.; Osborn, W. R.; Yeomans, J. M., Lattice Boltzmann simulation of nonideal fluids, Phys. Rev. Lett., 75, 5, 830 (1995)
[5] Shan, X.; Chen, H., Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E, 47, 3, 1815 (1993)
[6] He, X.; Chen, S.; Zhang, R., A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability, J. Comput. Phys., 152, 2, 642-663 (1999) · Zbl 0954.76076
[7] Ginzburg, I.; Steiner, K., Lattice Boltzmann model for free-surface flow and its application to filling process in casting, J. Comput. Phys., 185, 1, 61-99 (2003) · Zbl 1062.76554
[8] Körner, C.; Thies, M.; Hofmann, T.; Thürey, N.; Rüde, U., Lattice Boltzmann model for free surface flow for modeling foaming, J. Stat. Phys., 121, 1-2, 179-196 (2005) · Zbl 1108.76059
[9] Janssen, C.; Krafczyk, M., A lattice Boltzmann approach for free-surface-flow simulations on non-uniform block-structured grids, Comput. Math. Appl., 59, 7, 2215-2235 (2010) · Zbl 1193.76088
[10] Gueyffier, D.; Li, J.; Nadim, A.; Scardovelli, R.; Zaleski, S., Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows, J. Comput. Phys., 152, 2, 423-456 (1999) · Zbl 0954.76063
[11] Youngs, D. L., Time-dependent multi-material flow with large fluid distortion, Numer. Methods Fluid Dyn. (1982) · Zbl 0537.76071
[12] U. Rüde, N. Thürey, Free surface lattice-Boltzmann fluid simulations with and without level sets, in: Proceedings of Vision, Modeling and Visualization, 2004, pp. 199-208.
[13] Sethian, J. A., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Vol. 3 (1999), Cambridge University Press · Zbl 0973.76003
[14] Grunau, D.; Chen, S.; Eggert, K., A lattice Boltzmann model for multiphase fluid flows, Phys. Fluids A, 5, 10, 2557-2562 (1993) · Zbl 0797.76095
[15] Leclaire, S.; Reggio, M.; Trépanier, J.-Y., Numerical evaluation of two recoloring operators for an immiscible two-phase flow lattice Boltzmann model, Appl. Math. Model., 36, 5, 2237-2252 (2012) · Zbl 1243.76079
[16] Huang, H.; Krafczyk, M.; Lu, X., Forcing term in single-phase and Shan-Chen-type multiphase lattice Boltzmann models, Phys. Rev. E, 84, 4, Article 046710 pp. (2011)
[17] Kupershtokh, A. L.; Medvedev, D. A.; Karpov, D. I., On equations of state in a lattice Boltzmann method, Comput. Math. Appl., 58, 5, 965-974 (2009) · Zbl 1189.76413
[18] Li, Q.; Luo, K. H.; Li, X. J., Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows, Phys. Rev. E, 86, 1, Article 016709 pp. (2012)
[19] Sun, K.; Wang, T.; Jia, M.; Xiao, G., Evaluation of force implementation in pseudopotential-based multiphase lattice Boltzmann models, Physica A, 391, 15, 3895-3907 (2012)
[20] Inamuro, T.; Yokoyama, T.; Tanaka, K.; Taniguchi, M., An improved lattice Boltzmann method for incompressible two-phase flows with large density differences, Comput. & Fluids, 137, 55-69 (2016) · Zbl 1390.76726
[21] Lee, T.; Lin, C.-L., A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio, J. Comput. Phys., 206, 1, 16-47 (2005) · Zbl 1087.76089
[22] Fakhari, A.; Rahimian, M. H., Phase-field modeling by the method of lattice Boltzmann equations, Phys. Rev. E, 81, 3, Article 036707 pp. (2010) · Zbl 1263.76053
[23] Zheng, H. W.; Shu, C.; Chew, Y.-T., A lattice Boltzmann model for multiphase flows with large density ratio, J. Comput. Phys., 218, 1, 353-371 (2006) · Zbl 1158.76419
[24] Bhatnagar, P. L.; Gross, E. P.; Krook, M., A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, 3, 511 (1954) · Zbl 0055.23609
[25] Ginzburg, I.; Verhaeghe, F.; d’Humieres, D., Two-relaxation-time lattice Boltzmann scheme: About parametrization, velocity, pressure and mixed boundary conditions, Commun. Comput. Phys., 3, 2, 427-478 (2008)
[26] Lallemand, P.; Luo, L.-S., Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E, 61, 6, 6546 (2000)
[27] Karlin, I. V.; Ferrante, A.; Öttinger, H. C., Perfect entropy functions of the lattice Boltzmann method, Europhys. Lett., 47, 2, 182 (1999)
[28] Chikatamarla, S. S.; Ansumali, S.; Karlin, I. V., Entropic lattice Boltzmann models for hydrodynamics in three dimensions, Phys. Rev. Lett., 97, 1, Article 010201 pp. (2006) · Zbl 1228.82078
[29] Zhang, R.; Shan, X.; Chen, H., Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation, Phys. Rev. E, 74, 4, Article 046703 pp. (2006)
[30] Latt, J.; Chopard, B.; Malaspinas, O.; Deville, M.; Michler, A., Straight velocity boundaries in the lattice Boltzmann method, Phys. Rev. E, 77, 5, Article 056703 pp. (2008)
[31] Coreixas, C.; Chopard, B.; Latt, J., Comprehensive comparison of collision models in the lattice Boltzmann framework: Theoretical investigations, Phys. Rev. E, 100, Article 033305 pp. (2019)
[32] Coreixas, C.; Wissocq, G.; Puigt, G.; Boussuge, J.-F.; Sagaut, P., Recursive regularization step for high-order lattice Boltzmann methods, Phys. Rev. E, 96, Article 033306 pp. (2017)
[33] Guo, Z.; Zheng, C.; Shi, B., Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E, 65, 4, Article 046308 pp. (2002) · Zbl 1244.76102
[34] Shan, X.; Yuan, X.-F.; Chen, H., Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation, J. Fluid Mech., 550, 413-441 (2006) · Zbl 1097.76061
[35] Li, Z.; Cao, W.; Le Touzé, D., On the coupling of a direct-forcing immersed boundary method and the regularized lattice Boltzmann method for fluid-structure interaction, Comput. & Fluids, 190, 470-484 (2019) · Zbl 1451.76094
[36] Thürey, N.; Körner, C.; Rüde, U., Interactive Free Surface Fluids with the Lattice Boltzmann MethodTechnical Report 05-4 (2005), University of Erlangen-Nuremberg: University of Erlangen-Nuremberg Germany
[37] Lim, C. Y.; Shu, C.; Niu, X. D.; Chew, Y. T., Application of lattice Boltzmann method to simulate microchannel flows, Phys. Fluids, 14, 7, 2299-2308 (2002) · Zbl 1185.76227
[38] Webster, Richard; Oliver, Margaret A., Geostatistics for Environmental Scientists (2007), John Wiley & Sons · Zbl 1122.62099
[39] Chapman, S.; Cowling, T. G.; Burnett, D., The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases (1990), Cambridge University Press
[40] Botella, O.; Peyret, R., Benchmark spectral results on the lid-driven cavity flow, Comput. & Fluids, 27, 4, 421-433 (1998) · Zbl 0964.76066
[41] Colagrossi, A.; Antuono, M.; Souto-Iglesias, A.; Le Touzé, D., Theoretical analysis and numerical verification of the consistency of viscous smoothed-particle-hydrodynamics formulations in simulating free-surface flows, Phys. Rev. E, 84, 2, Article 026705 pp. (2011)
[42] Lighthill, J.; Lighthill, M. J., Waves in Fluids (2001), Cambridge University Press · Zbl 0153.30201
[43] Takacs, Lawrence L., A two-step scheme for the advection equation with minimized dissipation and dispersion errors, Mon. Weather Rev., 113, 6, 1050-1065 (1985)
[44] Lobovskỳ, L.; Botia-Vera, E.; Castellana, F.; Mas-Soler, J.; Souto-Iglesias, A., Experimental investigation of dynamic pressure loads during dam break, J. Fluids Struct., 48, 407-434 (2014)
[45] Marrone, S.; Antuono, M.; Colagrossi, A.; Colicchio, G.; Le Touzé, D.; Graziani, G., \( \delta \)-SPH Model for simulating violent impact flows, Comput. Methods Appl. Mech. Engrg., 200, 13-16, 1526-1542 (2011) · Zbl 1228.76116
[46] Ye, Zhouteng; Zhao, Xizeng; Deng, Zhengzhi, Numerical investigation of the gate motion effect on a dam break flow, J. Mar. Sci. Technol., 21, 4, 579-591 (2016)
[47] Mitsume, Naoto; Yoshimura, Shinobu; Murotani, Kohei; Yamada, Tomonori, Explicitly represented polygon wall boundary model for the explicit MPS method, Comput. Part. Mech., 2, 1, 73-89 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.