×

Anderson-Witting model of the relativistic Boltzmann equation near equilibrium. (English) Zbl 1429.83002

Summary: Anderson-Witting model is a relaxational model equation of the relativistic Boltzmann equation, which sees a wide application in physics. In this paper, we study the existence of classical solutions and its asymptotic behavior when the solution starts sufficiently close to a global relativistic Maxwellian.

MSC:

83A05 Special relativity
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
35Q20 Boltzmann equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Anderson, J.L., Witting, H.R.: A relativistic relaxation-time model for the Boltzmann equation. Physica 74, 466-488 (1974)
[2] Bhatnagar, P.L., Gross, E.P., Krook, M.L.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511-525 (1954) · Zbl 0055.23609
[3] Marle, C.: Sur l’établissement des equations de l’ hydrodynamique des fluides relativistes dissipatifs. II. Méthodes de résolution approchée de l’ equation de Boltzmann relativiste. Ann. Inst. Henri Poincaré 10, 127-194 (1969)
[4] Marle, C.: Modele cinétique pour l’ établissement des lois de la conduction de la chaleur et de la viscosité en théorie de la relativité. C. R. Acad. Sci. Paris 260, 6539-6541 (1965) · Zbl 0127.17408
[5] Cercignani, C., Kremer, G.M.: The Relativistic Boltzmann Equation: Theory and Applications. Birkhäuser, Basel (2002) · Zbl 1011.76001
[6] Eckart, C.: The thermodynamics of irreversible processes. III. Relativistic theory of the simple fluid. Phys. Rev. 58, 919 (1940) · JFM 66.1077.02
[7] Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon Press, Oxford (1959)
[8] Anderson, J.L., Witting, H.R.: Relativistic quantum transport coefficients. Physica 74, 489-495 (1974)
[9] Denicol, G.S., Heinz, U., Martinez, M., Noronha, J., Strickland, M.: New exact solution of the relativistic Boltzmann equation and its hydrodynamic limit. Phys. Rev. Lett. 113, 202301 (2014)
[10] Denicol, G.S., Heinz, U., Martinez, M., Noronha, J., Strickland, M.: Studying the validity of relativistic hydrodynamics with a new exact solution of the Boltzmann equation. Phys. Rev. D. 90, 125026 (2014)
[11] Florkowski, W., Maksymiuk, E., Ryblewski, R., Strickland, M.: Exact solution of the \[(0+1)(0+1)\]-dimensional Boltzmann equation for a massive gas. Phys. Rev. C 89, 054908 (2014)
[12] Florkowski, W., Ryblewski, R., Strickland, M.: Anisotropic hydrodynamics for rapidly expanding systems. Nucl. Phys. A 916, 249-259 (2013)
[13] Florkowski, W., Ryblewski, R., Strickland, M.: Testing viscous and anisotropic hydrodynamics in an exactly solvable case. Phys. Rev. C 88, 024903 (2013)
[14] Jaiswal, A.: Relativistic dissipative hydrodynamics from kinetic theory with relaxation time approximation. Phys. Rev. C. 87, 051901 (2013)
[15] Jaiswal, A.: Relativistic third-order dissipative fluid dynamics from kinetic theory. Phys. Rev. C. 88, 021903 (2013)
[16] Jaiswal, A., Ryblewski, R., Strickland, M.: Transport coefficients for bulk viscous evolution in the relaxation time approximation. Phys. Rev. C 90, 044908 (2014)
[17] Kremer, G.M., Patsko, C.H.: Relativistic ionized gases: Ohm and Fourier laws from Anderson and Witting model equation. Physica A 322, 329-344 (2003) · Zbl 1076.76619
[18] Mendoza, M., Boghosian, B.M., Herrmann, H.J., Succi, S.: Derivation of the lattice Boltzmann model for relativistic hydrodynamics. Phys. Rev. D 82, 105008 (2010)
[19] Mendoza, M., Karlin, I., Succi, S., Herrmann, H.J.: Relativistic lattice Boltzmann model with improved dissipation. Phys. Rev. D 87, 065027 (2013)
[20] Molnár, E., Niemi, H., Rischke, D.H.: Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation. Phys. Rev. D 93, 114025 (2016)
[21] Maartens, R., Wolvaardt, F.P.: Exact non-equilibrium solutions of the Einstein-Boltzmann equations. Class. Quantum Gravity 11, 203-225 (1994) · Zbl 0788.35137
[22] Triginer, J., Zimdahl, W., Pavon, D.: Kinetic theory for particle production. Class. Quantum Gravity 13, 403-416 (1996) · Zbl 0849.53078
[23] Zimdahl, W., Triginer, J., Pavon, D.: Collisional equilibrium, particle production, and the inflationary universe. Phys. Rev. D. 54, 6101 (1996)
[24] Yun, S.-B.: Cauchy problem for the Boltzmann-BGK model near a global Maxwellian. J. Math. Phys. 51(12), 123514 (2010) · Zbl 1314.82027
[25] Yun, S.-B.: Ellipsoidal BGK model near a global Maxwellian. SIAM J. Math. Anal. 47(3), 2324-2354 (2015) · Zbl 1321.82033
[26] Glassey, R.T., Strauss, W.A.: Asymptotic stability of the relativistic Maxwellian. Publ. Res. Inst. Math. Sci. 29(2), 301-347 (1993) · Zbl 0776.45008
[27] Guo, Y., Strain, R.M.: Momentum regularity and stability of the relativistic Vlasov-Maxwell-Boltzmann system. Commun. Math. Phys. 310(3), 649-673 (2012) · Zbl 1245.35130
[28] Strain, R.M.: Asymptotic stability of the relativistic Boltzmann equation for the soft potentials. Commun. Math. Phys. 300, 529-597 (2010) · Zbl 1214.35072
[29] Bellouquid, A., Calvo, J., Nieto, J., Soler, J.: On the relativistic BGK-Boltzmann model: asymptotics and hydrodynamics. J. Stat. Phys. 149, 284-316 (2012) · Zbl 1264.82111
[30] Bellouquid, A., Nieto, J., Urrutia, L.: Global existence and asymptotic stability near equilibrium for the relativistic BGK model. Nonlinear Anal. 114, 87-104 (2015) · Zbl 1309.35169
[31] Hwang, B.-H., Yun, S.-B.: Stationary solutions to the boundary value problem for relativistic BGK model in a slab. Kinet. Relat. Models 12(4), 749-764 (2019) · Zbl 1420.35171
[32] Bichteler, K.: On the Cauchy problem of the relativistic Boltzmann equation. Commun. Math. Phys. 4, 352-364 (1967)
[33] Dudyński, M.: On the linearized relativistic Boltzmann equation. II. Existence of hydrodynamics. J. Stat. Phys. 57(1-2), 199-245 (1989) · Zbl 0712.76081
[34] Dudyński, M., Ekiel-Jeżewska, M.L.: On the linearized relativistic Boltzmann equation. I. Existence of solutions. Commun. Math. Phys. 115(4), 607-629 (1985) · Zbl 0653.76052
[35] Glassey, R.T., Strauss, W.A.: Asymptotic stability of the relativistic Maxwellian via fourteen moments. Trans. Theory Stat. Phys. 24(4-5), 657-678 (1995) · Zbl 0882.35123
[36] Strain, R.M., Zhu, K.: Large-time decay of the soft potential relativistic Boltzmann equation in \[{\mathbb{R}}^3_x\] Rx3. Kinet. Relat. Models 5(2), 383-415 (2012) · Zbl 1247.76071
[37] Dudyński, M., Ekiel-Jeżewska, M.L.: Global existence proof for relativistic Boltzmann equation. J. Stat. Phys. 66(3), 991-1001 (1992) · Zbl 0899.76314
[38] Jiang, Z.: On the relativistic Boltzmann equation. Acta Math. Sci. 18(3), 348-360 (1998) · Zbl 0921.35178
[39] Jiang, Z.: On the Cauchy problem for the relativistic Boltzmann equation in a periodic box: global existence. Transp. Theory Statist. Phys. 28(6), 617-628 (1999) · Zbl 0964.76080
[40] Lee, H., Rendall, A.: The spatially homogeneous relativistic Boltzmann equation with a hard potential. Commun. Partial Differ. Equ. 38(12), 2238-2262 (2013) · Zbl 1287.82023
[41] Strain, R.M., Yun, S.-B.: Spatially homogenous Boltzmann equation for relativistic particles. SIAM J. Math. Anal. 46(1), 917-938 (2014) · Zbl 1321.35127
[42] Jang, J.W., Strain, R.M., Yun, S.-B.: Propagation of uniform upper bound for the spatially homogeneous relativistic Boltzmann equation. Preprint · Zbl 1467.76049
[43] Andreasson, H.: Regularity of the gain term and strong \[L^1\] L1-convergence to equilibrium for the relativistic Boltzmann equation. SIAM J. Math. Anal. 27, 1386-1405 (1996) · Zbl 0858.76072
[44] Jang, J.W., Yun, S.-B.: Gain of regularity for the relativistic collision operator. Preprint. arXiv:1808.10147 · Zbl 1408.81034
[45] Wennberg, B.: The geometry of binary collisions and generalized Radon transforms. Arch. Ration. Mech. Anal. 139(3), 291-302 (1997) · Zbl 0902.44002
[46] Calogero, S.: The Newtonian limit of the relativistic Boltzmann equation. J. Math. Phys. 45, 4042-4052 (2004) · Zbl 1064.82030
[47] Strain, R.M.: Global Newtonian limit for the relativistic Boltzmann equation near vacuum. SIAM J. Math. Anal. 42, 1568-1601 (2010) · Zbl 1429.76095
[48] Speck, J., Strain, R.M.: Hilbert expansion from the Boltzmann equation to relativistic fluids. Commun. Math. Phys. 304, 229-280 (2011) · Zbl 1221.35271
[49] Guo, Y.: The Boltzmann equation in the whole space. Indiana Univ. Math. J. 53(4), 1081-1094 (2004) · Zbl 1065.35090
[50] Guo, Y.: The Vlasov-Maxwell-Boltzmann system near Maxwellians. Invent. Math. 153(3), 593-630 (2003) · Zbl 1029.82034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.