×

Spectrum and wave functions of U(1)\(_{2+1}\) lattice gauge theory from Monte Carlo Hamiltonian. (English) Zbl 1274.81160

Summary: We address an old problem in lattice gauge theory – the computation of the spectrum and wave functions of excited states. Our method is based on the Hamiltonian formulation of lattice gauge theory. Using the method of Monte Carlo with importance sampling, we construct a stochastic basis of Bargmann link states, drawn from a physical probability density function. In the next step, we compute transition amplitudes between stochastic basis states. Then, we extract energy spectra and wave functions from a matrix of transition elements. To test this method, we apply it to U(1) lattice gauge theory in (2+1) dimensions and compute the energy spectrum, wave functions and thermodynamic functions of the electric Hamiltonian of this theory. We compare the numerical results with the analytical results and observe a reasonable scaling of energies and wave functions in the variable of time.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81T25 Quantum field theory on lattices
65C05 Monte Carlo methods
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1103/PhysRevD.10.2445
[2] DOI: 10.1103/RevModPhys.47.773
[3] DOI: 10.1016/S0375-9601(99)00304-7
[4] DOI: 10.1016/S0920-5632(00)00896-3 · Zbl 01874813
[5] DOI: 10.1016/S0920-5632(00)91811-5
[6] Jiang J. Q., Commun. Theor. Phys. 34 pp 723–
[7] Luo X. Q., Commun. Theor. Phys. 36 pp 7–
[8] DOI: 10.1016/S0378-4371(00)00044-3
[9] Luo X. Q., Commun. Theor. Phys. 38 pp 561–
[10] Luo X. Q., Commun. Theor. Phys. 41 pp 509–
[11] DOI: 10.1007/s11433-004-0020-5 · Zbl 1101.81053
[12] DOI: 10.1016/S0378-4754(02)00230-6 · Zbl 1139.82319
[13] DOI: 10.1016/S0375-9601(02)00750-8 · Zbl 0996.81120
[14] DOI: 10.1016/S0920-5632(03)01598-6 · Zbl 1097.82535
[15] DOI: 10.1142/S0217732307023146 · Zbl 1127.81333
[16] DOI: 10.1103/PhysRevD.21.2892
[17] D’Hoker E., Nucl. Phys. B 180 pp 341–
[18] Ambjorn J., Nucl. Phys. B 210 pp 347–
[19] Sterling T., Nucl. Phys. B 220 pp 327–
[20] Yung C. M., Phys. Rev. D 33 pp 1795–
[21] DOI: 10.1103/PhysRevD.62.054511
[22] DOI: 10.1103/PhysRevD.32.977
[23] DOI: 10.1103/PhysRevD.30.1285
[24] DOI: 10.1103/PhysRevD.31.871
[25] DOI: 10.1103/PhysRevD.28.2067
[26] DOI: 10.1088/0305-4470/20/18/039 · Zbl 0627.60109
[27] DOI: 10.1103/PhysRevD.36.3218
[28] DOI: 10.1103/PhysRevD.46.824
[29] DOI: 10.1103/PhysRevD.38.1954
[30] DOI: 10.1103/PhysRevD.43.1978
[31] DOI: 10.1103/PhysRevD.53.1523
[32] DOI: 10.1103/PhysRevD.53.2610
[33] DOI: 10.1103/PhysRevD.45.4652
[34] DOI: 10.1103/PhysRevD.53.1429
[35] Alessandrini V., Nucl. Phys. B 200 pp 355–
[36] DOI: 10.1103/PhysRevD.28.2059
[37] DOI: 10.1103/PhysRevD.68.034504
[38] DOI: 10.1103/PhysRevD.71.077502
[39] DOI: 10.1103/PhysRevD.11.395
[40] Tung W.-K., Group Theory in Physics (1993)
[41] Creutz M., Quarks, Gluons and Lattices (1983)
[42] DOI: 10.1016/S0550-3213(99)00533-7 · Zbl 0951.81023
[43] DOI: 10.1103/PhysRevLett.51.2257
[44] DOI: 10.1103/PhysRevD.32.2756
[45] DOI: 10.1103/PhysRevD.32.2736
[46] DOI: 10.1016/0550-3213(86)90606-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.