×

A new method of dynamical stability, i.e. fractional generalized Hamiltonian method, and its applications. (English) Zbl 1410.70021

Summary: In the paper, we present fractional generalized Hamiltonian method of dynamical stability, in terms of Riesz-Riemann-Liouville derivative, and study its applications. For an actual dynamical system, the fractional generalized Hamiltonian method of constructing a fractional dynamical model is given, and then the six criterions for fractional generalized Hamiltonian method of dynamical stability are presented. As applications, by using the fractional generalized Hamiltonian method, we construct five kinds of actual fractional dynamical models, which include a fractional Euler-Poinsot model of rigid body that rotates with respect to a fixed-point, a fractional Hojman-Urrutia model, a fractional Lorentz-Dirac model, a fractional Whittaker model and a fractional Robbins-Lorenz model, and we explore the dynamical stability of these models, respectively. This work provides a general method for studying the dynamical stability of an actual fractional dynamical system that is related to science and engineering.

MSC:

70H33 Symmetries and conservation laws, reverse symmetries, invariant manifolds and their bifurcations, reduction for problems in Hamiltonian and Lagrangian mechanics
37J25 Stability problems for finite-dimensional Hamiltonian and Lagrangian systems
35R11 Fractional partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arnold, V. I., Mathematical Methods of Classical Mechanics (1978), Springer-Verlag: Springer-Verlag New York · Zbl 0386.70001
[2] Djukie, D. S.; Atanackovie, T. M., An extremum variational principle for classical Hamiltonian systems, Acta Mech., 50, 163-175 (1984)
[3] He, B. Y.; Chen, L. Y., Hamiltonian forms of the two new integrable systems and two kinds of Darboux transformations, Appl. Math. Comp., 244, 261-273 (2014) · Zbl 1335.37052
[4] Luo, S. K.; Zhang, Y. F., Advances in the Study of Dynamics of Constrained System (2008), Science Press: Science Press Beijing
[5] Luo, S. K.; Li, Z. J.; Li, L., A new Lie symmetrical method of finding a conserved quantity for a dynamical system in phase space, Acta Mech., 223, 2621-2632 (2012) · Zbl 1307.70015
[6] Starosvetsky, Y.; Ben-Meir, Y., Nonstationary regimes of homogeneous Hamiltonian systems in the state of sonic vacuum, Phys. Rev. E, 87, 062919 (2013)
[7] Banerjee, R.; Mukherjee, P.; Paul, B., New Hamiltonian analysis of Regge-Teitelboim minisuperspace cosmology, Phys. Rev. D, 89, 043508 (2014)
[8] Wang, P.; Fang, J. H.; Ding, N.; Zhang, X. N., Hojman exact invariants and adiabatic invariants of Hamilton system, Commun. Theor. Phys., 48, 996-998 (2007) · Zbl 1267.70023
[9] Luo, S. K., New types of the Lie symmetries and conserved quantities for a relativistic Hamilton system, Chin. Phys. Lett., 20, 597-599 (2003)
[10] Pauli, W., On the Hamiltonian structure of non-local field theories, IL Nuovo Cimento, 10, 648-667 (1953) · Zbl 0053.17309
[11] Martin, J. L., Generalized classical dynamics and the ‘classical analogue’ of Fermi oscillator, Proc. Roy. Soc. London. Ser. A., 251, 536-542 (1959) · Zbl 0086.22203
[12] Li, J. B.; Zhao, X. H.; Liu, Z. R., Theory and Application of the Generalized Hamilton Systems (1994), Science Press: Science Press Beijing
[13] Jiang, W. A.; Luo, S. K., A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems, Nonlinear Dyn., 67, 475-482 (2012) · Zbl 1312.70012
[14] Luo, S. K.; Li, Z. J.; Peng, W.; Li, L., A Lie symmetrical basic integral variable relation and a new conservation law for generalized Hamiltonian systems, Acta Mech., 224, 71-84 (2013) · Zbl 1356.70024
[15] Whittaker, E. T., A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (1904), Cambridge University Press: Cambridge University Press England · JFM 35.0682.01
[16] Rumyantsev, V. V., On the stability of motion of nonholonomic systems, J. Appl. Math. Mech., 31, 260-271 (1967) · Zbl 0159.26101
[17] Wang, X. H., Stability of planar waves in a Lotka-Volterra system, Appl. Math. Comput., 259, 313-326 (2015) · Zbl 1390.35128
[18] Iňnarrea, M.; Lanchares, V.; Palacin, J. F.; Pascual, A. I.; Salas, J. P.; Yanguas, P., Lyapunov stability for a generalized Hénon-Heiles system in a rotating reference frame, Appl. Math. Comput., 253, 159-171 (2015) · Zbl 1338.37068
[19] Moze, M.; Sabatier, J.; Oustaloup, A., LMI characterization of fractional systems stability, Adv. Fract. Calc.: Theor. Dev. Appl. Phys. Eng., 419-434 (2007) · Zbl 1125.93051
[20] Kheirizad, I.; Tavazoei, M. S.; Jalali, A. A., Stability criteria for a class of fractional order systems, Nonlinear Dyn., 61, 153-161 (2010) · Zbl 1204.93106
[21] Pi, D. H., On the stability of a second order retarded differential equation, Appl. Math. Comput., 256, 324-333 (2015) · Zbl 1338.34130
[22] Jiang, W. A.; Luo, S. K., Stability for manifolds of equilibrium state of generalized Hamiltonian system, Meccanica, 47, 379-383 (2012) · Zbl 1293.70059
[23] Zhang, Q. M.; Tang, X. H., Lyapunov inequalities and stability for discrete linear Hamiltonian systems, Appl. Math. Comp., 218, 574-582 (2011) · Zbl 1229.39026
[24] Li, L.; Peng, W.; Xu, Y. L.; Luo, S. K., Stability for manifolds of equilibrium states of generalized Hamiltonian systems with additional terms, Nonlinear Dyn., 72, 663-669 (2013) · Zbl 1268.34103
[25] Mandelbrot, B. B., The Fractal Geometry of Nature (1982), W.H. Freeman: W.H. Freeman New York · Zbl 0504.28001
[26] Riewe, F., Mechanics with fractional derivatives, Phys. Rev. E, 55, 3581-3592 (1997)
[27] Mendiguren, J.; Corte´s, F.; Galdos, L., A generalised fractional derivative model to represent elastoplastic behaviour of metals, Int. J. Mech. Sci., 65, 12-17 (2012)
[28] Klimek, M., Fractional sequential mechanics model with symmetric fractional derivatives, Czechoslov. J. Phys., 51, 1348-1354 (2001) · Zbl 1064.70507
[29] Hu, J.; Ye, Y. J.; Shen, S. F.; Zhang, J., Lie symmetry analysis of the time fractional \(K\) d \(V\)-type equation, Appl. Math. Comput., 233, 439-444 (2014) · Zbl 1334.37075
[30] Agrawal, O. P., Generalized variational problems and Euler-Lagrange equations, Comput. Math. Appl., 59, 1852-1864 (2010) · Zbl 1189.49029
[31] Odzijewicz, T.; Malinowska, A. B.; Torres, D. F.M., Fractional variational calculus with classical and combined Caputo derivatives, Nonlinear Anal.: Theor. Methods Appl., 75, 1507-1515 (2012) · Zbl 1236.49043
[32] Muslih, S. I.; Baleanu, D., Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives, J. Math. Anal. Appl., 304, 599-606 (2005) · Zbl 1149.70320
[33] Tarasov, V. E.; Zaslavsky, G. M., Nonholonomic constraints with fractional derivatives, J. Phys. A: Math. Gen., 39, 9797-9815 (2006) · Zbl 1101.70011
[34] Tarasov, V. E., Fractional Dynamics (2010), Higher Education Press: Higher Education Press Beijing
[35] Chen, X. W.; Zhao, G. L.; Mei, F. X., A fractional gradient representation of the Poincaré equations, Nonlinear Dyn., 73, 579-582 (2013) · Zbl 1281.70021
[36] Frederico, S. F.; Torres, D. F.M., Fractional optimal control in the sense of Caputo and the fractional Noether’s theorem, Int. Math. Forum., 3, 479-493 (2008) · Zbl 1154.49016
[37] Luo, S. K.; Xu, Y. L., Fractional Birkhoffian mechanics, Acta Mech., 226, 829-844 (2015) · Zbl 1357.70017
[38] He, J. M.; Xu, Y. L.; Luo, S. K., Stability for manifolds of equilibrium state of fractional Birkhoffian systems, Acta Mech., 226, 2135-2146 (2015) · Zbl 1325.70046
[39] Luo, S. K.; Xu, Y. L., Fractional Lorentz-Dirac model and its dynamical behaviors, Int. J. Theor. Phys., 54, 572-581 (2015) · Zbl 1327.78011
[40] Luo, S. K.; Li, L., Fractional generalized Hamiltonian mechanics and Poisson conservation law in terms of combined Riesz derivatives, Nonlinear Dyn., 73, 639-647 (2013) · Zbl 1281.70026
[41] Luo, S. K.; Li, L., Fractional generalized Hamiltonian equations and its integral invariants, Nonlinear Dyn., 73, 339-346 (2011) · Zbl 1281.70025
[42] Li, L.; Luo, S. K., Fractional generalized Hamiltonian mechanics, Acta Mech., 224, 1757-1771 (2013) · Zbl 1321.70015
[43] Luo, S. K.; Li, L.; Xu, Y. L., Lie algebraic structure and generalized Poisson conservation law for fractional generalized Hamiltonian systems, Acta Mech., 225, 2653-2666 (2014) · Zbl 1302.70046
[44] Hojman, S.; Urrutia, L. F., On the inverse problem of the calculus of variations, J. Math. Phys., 22, 1896-1903 (1981) · Zbl 0475.70023
[45] Santilli, R. M., Foundations of Theoretical Mechanics II (1983), Springer: Springer New York
[46] Kupriyanov, V. G., Hamiltonian formulation and action principle for the Lorentz-Dirac system, Int. J. Theor. Phys., 45, 1129-1144 (2006) · Zbl 1100.83005
[47] Gitman, D. M.; Kupriyanov, VG., The action principle for a system of differential equations, J. Phys. A.: Math. Theor., 40, 10071 (2007) · Zbl 1189.35010
[48] Santilli, R. M., Foundations of Theoretical Mechanics I (1978), Springer: Springer New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.