×

Lorentz violation naturalness revisited. (English) Zbl 1388.83039

Summary: We revisit here the naturalness problem of Lorentz invariance violations on a simple toy model of a scalar field coupled to a fermion field via a Yukawa interaction. We first review some well-known results concerning the low-energy percolation of Lorentz violation from high energies, presenting some details of the analysis not explicitly discussed in the literature and discussing some previously unnoticed subtleties. We then show how a separation between the scale of validity of the effective field theory and that one of Lorentz invariance violations can hinder this low-energy percolation. While such protection mechanism was previously considered in the literature, we provide here a simple illustration of how it works and of its general features. Finally, we consider a case in which dissipation is present, showing that the dissipative behaviour does not percolate generically to lower mass dimension operators albeit dispersion does. Moreover, we show that a scale separation can protect from unsuppressed low-energy percolation also in this case.

MSC:

83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] S. Liberati, Tests of Lorentz invariance: a 2013 update, Class. Quant. Grav.30 (2013) 133001 [arXiv:1304.5795] [INSPIRE]. · Zbl 1273.83002
[2] D. Mattingly, Modern tests of Lorentz invariance, Living Rev. Rel.8 (2005) 5 [gr-qc/0502097] [INSPIRE]. · Zbl 1255.83059
[3] G. Amelino-Camelia, Quantum-spacetime phenomenology, Living Rev. Rel.16 (2013) 5 [arXiv:0806.0339] [INSPIRE].
[4] M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys.73 (2001) 977 [hep-th/0106048] [INSPIRE]. · Zbl 1205.81126
[5] R. Gambini and J. Pullin, Nonstandard optics from quantum space-time, Phys. Rev.D 59 (1999) 124021 [gr-qc/9809038] [INSPIRE]. · Zbl 0948.83002
[6] L.F. Urrutia, Corrections to flat-space particle dynamics arising from space granularity, Lect. Notes Phys.702 (2006) 299 [hep-ph/0506260] [INSPIRE]. · Zbl 1151.83302
[7] N.E. Mavromatos, Lorentz invariance violation from string theory, PoS(QG-Ph)027 [arXiv:0708.2250] [INSPIRE].
[8] P. Hořava, Quantum gravity at a Lifshitz point, Phys. Rev.D 79 (2009) 084008 [arXiv:0901.3775] [INSPIRE].
[9] T. Jacobson, Einstein-aether gravity: a status report, PoS (QG-Ph) 020 [arXiv:0801.1547] [INSPIRE].
[10] G. Amelino-Camelia, Testable scenario for relativity with minimum length, Phys. Lett.B 510 (2001) 255 [hep-th/0012238] [INSPIRE]. · Zbl 1062.83540
[11] G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman and L. Smolin, The principle of relative locality, Phys. Rev.D 84 (2011) 084010 [arXiv:1101.0931] [INSPIRE]. · Zbl 1263.83064
[12] C. Rovelli and S. Speziale, Lorentz covariance of loop quantum gravity, Phys. Rev.D 83 (2011) 104029 [arXiv:1012.1739] [INSPIRE].
[13] L. Bombelli, J. Lee, D. Meyer and R. Sorkin, Space-time as a causal set, Phys. Rev. Lett.59 (1987) 521 [INSPIRE].
[14] L. Bombelli, J. Henson and R.D. Sorkin, Discreteness without symmetry breaking: a theorem, Mod. Phys. Lett.A 24 (2009) 2579 [gr-qc/0605006] [INSPIRE]. · Zbl 1179.83012
[15] G. Amelino-Camelia, Relativity in space-times with short distance structure governed by an observer independent (Planckian) length scale, Int. J. Mod. Phys.D 11 (2002) 35 [gr-qc/0012051] [INSPIRE]. · Zbl 1062.83500
[16] J. Collins, A. Perez, D. Sudarsky, L. Urrutia and H. Vucetich, Lorentz invariance and quantum gravity: an additional fine-tuning problem?, Phys. Rev. Lett.93 (2004) 191301 [gr-qc/0403053] [INSPIRE].
[17] R. Iengo, J.G. Russo and M. Serone, Renormalization group in Lifshitz-type theories, JHEP11 (2009) 020 [arXiv:0906.3477] [INSPIRE].
[18] R. Gambini, S. Rastgoo and J. Pullin, Small Lorentz violations in quantum gravity: do they lead to unacceptably large effects?, Class. Quant. Grav.28 (2011) 155005 [arXiv:1106.1417] [INSPIRE]. · Zbl 1225.83031
[19] J. Polchinski, Comment on ‘Small Lorentz violations in quantum gravity: do they lead to unacceptably large effects?’, Class. Quant. Grav.29 (2012) 088001 [arXiv:1106.6346] [INSPIRE]. · Zbl 1242.83044
[20] N. Afshordi, Why is high energy physics Lorentz invariant?, arXiv:1511.07879 [INSPIRE].
[21] S. Groot Nibbelink and M. Pospelov, Lorentz violation in supersymmetric field theories, Phys. Rev. Lett.94 (2005) 081601 [hep-ph/0404271] [INSPIRE].
[22] P.A. Bolokhov, S. Groot Nibbelink and M. Pospelov, Lorentz violating supersymmetric quantum electrodynamics, Phys. Rev.D 72 (2005) 015013 [hep-ph/0505029] [INSPIRE].
[23] L. Sindoni, The Higgs mechanism in Finsler spacetimes, Phys. Rev.D 77 (2008) 124009 [arXiv:0712.3518] [INSPIRE].
[24] M. Pospelov and Y. Shang, On Lorentz violation in Hořava-Lifshitz type theories, Phys. Rev.D 85 (2012) 105001 [arXiv:1010.5249] [INSPIRE].
[25] H.B. Nielsen and M. Ninomiya, β-function in a non-covariant Yang-Mills theory, Nucl. Phys.B 141 (1978) 153 [INSPIRE].
[26] H.B. Nielsen and I. Picek, The Rédei-like model and testing Lorentz invariance, Phys. Lett.B 114 (1982) 141 [INSPIRE].
[27] G. Bednik, O. Pujolàs and S. Sibiryakov, Emergent Lorentz invariance from strong dynamics: holographic examples, JHEP11 (2013) 064 [arXiv:1305.0011] [INSPIRE].
[28] J. Collins, A. Perez and D. Sudarsky, Lorentz invariance violation and its role in quantum gravity phenomenology, in Approaches to quantum gravity: towards a new understanding of space and time, D. Oriti ed., Cambridge University Press, Cambridge U.K. (2006) [hep-th/0603002] [INSPIRE].
[29] R. Parentani, Constructing QFT’s wherein Lorentz invariance is broken by dissipative effects in the UV, PoS(QG-Ph)031 [arXiv:0709.3943] [INSPIRE].
[30] A. Perez and D. Sudarsky, Comments on challenges for quantum gravity, Phys. Rev. Lett.91 (2003) 179101 [gr-qc/0306113] [INSPIRE].
[31] J. Alfaro, Quantum gravity and Lorentz invariance deformation in the standard model, Phys. Rev. Lett.94 (2005) 221302 [hep-th/0412295] [INSPIRE].
[32] R.C. Myers and M. Pospelov, Experimental challenges for quantum gravity, in Proceedings of the 3rd International Symposium on Quantum Theory and Symmetries (QTS-3), Cincinnati U.S.A. (2003), pp. 732-744 [gr-qc/0402028] [INSPIRE].
[33] R.P. Woodard, Ostrogradsky’s theorem on Hamiltonian instability, Scholarpedia10 (2015) 32243 [arXiv:1506.02210] [INSPIRE].
[34] D.A. Eliezer and R.P. Woodard, The problem of nonlocality in string theory, Nucl. Phys.B 325 (1989) 389 [INSPIRE].
[35] G. Kleppe and R.P. Woodard, Nonlocal Yang-Mills, Nucl. Phys.B 388 (1992) 81 [hep-th/9203016] [INSPIRE].
[36] S.D. Joglekar, Causality violation in non-local QFT, in Workshop Series on Theoretical High Energy Physics, Roorkee India (2005) [hep-th/0601006] [INSPIRE].
[37] L. Modesto and L. Rachwal, Universally finite gravitational and gauge theories, Nucl. Phys.B 900 (2015) 147 [arXiv:1503.00261] [INSPIRE]. · Zbl 1331.81201
[38] E.T. Tomboulis, Nonlocal and quasilocal field theories, Phys. Rev.D 92 (2015) 125037 [arXiv:1507.00981] [INSPIRE].
[39] S.B. Giddings, Locality in quantum gravity and string theory, Phys. Rev.D 74 (2006) 106006 [hep-th/0604072] [INSPIRE].
[40] G. Calcagni and L. Modesto, Nonlocality in string theory, J. Phys.A 47 (2014) 355402 [arXiv:1310.4957] [INSPIRE]. · Zbl 1298.81254
[41] F. Markopoulou and L. Smolin, Disordered locality in loop quantum gravity states, Class. Quant. Grav.24 (2007) 3813 [gr-qc/0702044] [INSPIRE]. · Zbl 1129.83321
[42] R.D. Sorkin, Does locality fail at intermediate length-scales, in Approaches to quantum gravity: towards a new understanding of space and time, D. Oriti ed., Cambridge University Press, Cambridge U.K. (2006) [gr-qc/0703099] [INSPIRE]. · Zbl 1218.83020
[43] A. Belenchia, D.M.T. Benincasa and S. Liberati, Nonlocal scalar quantum field theory from causal sets, JHEP03 (2015) 036 [arXiv:1411.6513] [INSPIRE]. · Zbl 1388.81249
[44] R. Gambini and J. Pullin, Emergence of stringlike physics from Lorentz invariance in loop quantum gravity, Int. J. Mod. Phys.D 23 (2014) 1442023 [arXiv:1406.2610] [INSPIRE].
[45] F. Dowker, J. Henson and R.D. Sorkin, Quantum gravity phenomenology, Lorentz invariance and discreteness, Mod. Phys. Lett.A 19 (2004) 1829 [gr-qc/0311055] [INSPIRE].
[46] A. Jain and S.D. Joglekar, Causality violation in nonlocal quantum field theory, Int. J. Mod. Phys.A 19 (2004) 3409 [hep-th/0307208] [INSPIRE].
[47] G. Saini and S.D. Joglekar, Bound on nonlocal scale from g − 2 of muon in a nonlocal W-S model, Z. Phys.C 76 (1997) 343 [hep-ph/9701405] [INSPIRE].
[48] D. Evens, J.W. Moffat, G. Kleppe and R.P. Woodard, Nonlocal regularizations of gauge theories, Phys. Rev.D 43 (1991) 499 [INSPIRE].
[49] D. Sudarsky and J.A. Caicedo, On the proposals of Lorentz invariance violation resulting from a quantum-gravitational granularity of space-time, J. Phys. Conf. Ser.24 (2005) 69 [INSPIRE].
[50] S. Liberati and L. Maccione, Astrophysical constraints on Planck scale dissipative phenomena, Phys. Rev. Lett.112 (2014) 151301 [arXiv:1309.7296] [INSPIRE].
[51] E. Borriello, S. Chakraborty, A. Mirizzi and P.D. Serpico, Stringent constraint on neutrino Lorentz-invariance violation from the two IceCube PeV neutrinos, Phys. Rev.D 87 (2013) 116009 [arXiv:1303.5843] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.