×

Variational principles for nonpotential operators. (English. Russian original) Zbl 0835.58012

Translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Noveishie Dostizh. 40, 3–178 (1992; Zbl 0766.49031).

MSC:

58E30 Variational principles in infinite-dimensional spaces
58-02 Research exposition (monographs, survey articles) pertaining to global analysis
34A34 Nonlinear ordinary differential equations and systems
47H99 Nonlinear operators and their properties
47N20 Applications of operator theory to differential and integral equations
49S05 Variational principles of physics
49R50 Variational methods for eigenvalues of operators (MSC2000)
70H05 Hamilton’s equations

Citations:

Zbl 0766.49031
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. A. Aizerman, Classical Mechanics, 2nd edition [in Russian], Nauka, Moscow (1980).
[2] L. Ainola, ”Variational principles and general formulas for a mixed problem of the wave equation,” Izv. Akad. Nauk ÉSSR, Fiz., Mat.,18, No. 1, 48-56 (1969).
[3] P. Appel, Traité de Mécanique Rationnelle. Tome II. Dynamique des Systèmes. Mécanique Analitique, Gauthier?Villars, Paris (1931).
[4] V. I. Arnol’d, Mathematical Methods of Classical Mechanics, 3rd edition [in Russian], Nauka, Moscow (1989).
[5] V. I. Arnol’d, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Itogi Nauki i Tekhniki, Ser. Sovrem. Probl. Mat. Fund. Napravl., Vol. 3, Akad. Nauk SSSR, VINITI, Moscow (1985).
[6] V. L. Berdichevskii, ”The variational equation in continuum mechanics,” in: Problems of the Mechanics of a Rigid Deformable Body [in Russian], Sudostroenie, Leningrad (1970), pp. 55-56.
[7] V. L. Berdichevskii, Variational Principles of Continuum Mechanics [in Russian], Nauka, Moscow (1983).
[8] Yu. M. Berezanskii (Yu. M. Berezanskii), Expansion in Eigenfunctions of Self-Adjoint Operators, Am. Math. Soc., Providence (1968).
[9] G. D. Birkhoff, Dynamical Systems, Am. Math. Soc., Providence (1927).
[10] M. Sh. Birman, ”On minimal functionals for second-order elliptic differential equations,” Dokl. Akad. Nauk SSSR,93, No. 1, 953-956 (1953).
[11] M. Sh. Birman, ”On Trefftz’s variational method for the equation ?u = f,” Dokl. Akad. Nauk SSSR,101, No. 2, 201-204 (1955).
[12] M. M. Vainberg, Variational Methods for the Study of Nonlinear Operators, Holden?Day, San Francisco (1964).
[13] R. S. Varga, Functional Analysis and Approximation Theory in Numerical Analysis, SIAM, Philadelphia (1971). · Zbl 0226.65064
[14] A. M. Vershik and L. D. Faddeev, ”Lagrangian mechanics in an invariant presentation,” in: Problems of Theoretical Physics, II, Theory of the Atom, Functional Methods in Quantum Field Theory and Statistical Physics, Mathematical Physics [in Russian], Leningrad Univ. (1975), pp. 129-141.
[15] A. M. Vinogradov, ”On the algebro?geometric foundations of Lagrangian field theory,” Dokl. Akad. Nauk SSSR,236, No. 2, 284-287 (1977). · Zbl 0403.58005
[16] A. M. Vinogradov, ”Hamiltonian structures in field theory,” Dokl. Akad. Nauk SSSR,241, No. 1, 18-21 (1978).
[17] V. S. Vladimirov, ”Mathematical problems of the uniform-speed theory of transport,” Trudy Mat. Inst. Akad. Nauk SSSR,61 (1961).
[18] M. K. Gavurin, ”Analytical methods for the investigation of nonlinear functional transformations,” Uch. Zap. Leningr. Gos. Univ., Ser. Mat.,19 (1950).
[19] A. S. Galiullin, ”Generalizations of Hamiltonian systems,” Differents. Uravn.,24, No. 5, 751-760 (1988). · Zbl 0662.70018
[20] I. M. Gel’fand and I. Ya. Dorfman, ”Schouten bracket and Hamiltonian operators,” Funkts. Anal. Prilozhen.,14, No. 3, 71-74 (1980). · Zbl 0444.58010
[21] I. M. Gel’fand, Yu. I. Manin, and M. A. Shubin, ”Poisson brackets and the kernel of the variational derivative in the formal calculus of variations,” Funkts. Anal. Prilozhen.,10, No. 4, 30-34 (1976). · Zbl 0534.58024
[22] C. Godbillon, Géométrie Différentielle et Mécanique Analytique, Hermann, Paris (1969).
[23] A. A. Dezin, ”Existence and uniqueness theorems for boundary value problems for partial differential equations in function spaces,” Usp. Mat. Nauk,14, No. 3, 21-73 (1959). · Zbl 0104.34001
[24] A. V. Dzhishkariani, ”On the question of the stability of approximate methods of variational type,” Zh. Vychisl. Mat. Mat. Fiz.,11, 569-579 (1971). · Zbl 0223.49028
[25] V. P. Didenko, ”A variational method for the solution of boundary value problems whose operator is not symmetric,” Dokl. Akad. Nauk SSSR,240, No. 6, 1277-1280 (1978).
[26] V. P. Didenko and A. A. Popova, Inequalities with a negative norm and variational problems for asymmetric differential operators. Preprint No. 29, Akad. Nauk Ukr. SSR, Inst. Kibernet., Kiev (1981).
[27] P. A. M. Dirac, The Principles of Quantum Mechanics [Russian translation], Nauka, Moscow (1979).
[28] V. V. Dodonov and V. I. Man’ko, ”Invariants and correlated states of nonstationary quantum systems,” Trudy Fiz. Inst. Lebedev,183, 71-181 (1987).
[29] V. V. Dodonov, V. I. Man’ko, and V. D. Skarzhinskii, ”Ambiguities of variational description of classical systems and the quantization problem,” Tr. Fiz. Inst. Lebedev,152, 37-89 (1983).
[30] V. V. Zharinov and N. G. Marchuk, ”Green formulas and bilinear conservation laws,” Mat. Zametki,40, No. 4, 478-483 (1986). · Zbl 0623.47055
[31] S. E. Zhelezovskii, V. F. Kirichenko, and V. A. Krysko, ”On the linear hyperbolic equations in a Hilbert space with a B-symmetric and B-positive operator in the left-hand side,” Differents. Uravn.,25, No. 4, 652-659 (1989).
[32] V. I. Zaplatnyi, ”Extremal properties of the motion of certain mechanical systems with a finite number of degrees of freedom and continual systems,” Candidate’s Dissertation, KPI, Kiev (1980.
[33] V. I. Zaplatnyi, ”On the construction of the Lagrange density function from a given system of second-order partial differential equations,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 7, 535-538 (1979).
[34] V. I. Zaplatnyi and N. E. Tkachenko, ”Construction of the Lagrange function for dissipative systems on the basis of the solution of the inverse problem of the calculus of variations,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 2, 30-32 (1986). · Zbl 0533.70017
[35] N. Kh. Ibragimov (N. H. Ibragimov), Transformation Groups Applied to Mathematical Physics, D. Reidel, Dordrecht (1985).
[36] V. A. Il’in, ”Some inequalities in function spaces and their application to the investigation of the convergence of variational processes,” Trudy Mat. Inst. Akad. Nauk SSSR,53, 64-127 (1959).
[37] G. G. Kazaryan, ”A variational problem for a nonregular equation and the uniqueness of the classical solution,” Differents. Uravn.,18, No. 11, 1907-1917 (1982).
[38] M. V. Karasev and V. P. Maslov, Nonlinear Poisson Brackets. Geometry and Quantification [in Russian], Nauka, Moscow (1991). · Zbl 0731.58002
[39] É. Cartan, Les Systèmes Différentiels Extérieurs et Leurs Applications Géométriques, Hermann, Paris (1945).
[40] S. N. Kirpichnikov, ”On a potential-theoretic method of solving problems of mechanics,” Vestn. Leningr. Univ.,16, No. 13, Vyp. 3, 103-110 (1961).
[41] Yu. B. Klyuchkovskii and P. P. Navrotskii, ”Conditions for the existence of a unique Lagrange function for a partially Lagrange system of ordinary differential equations,” Mat. Metody Fiz.-Mekh. Polya, No. 24, 34-37 (1986).
[42] M. F. Kravchuk, Vid-vo VUAI (1936).
[43] M. A. Krasnosel’skii, Topological Methods in the Theory of Nonlinear Integral Equations, Macmillan, New York (1964).
[44] M. G. Krein, ”On the theory of weighted integral equations,” Izv. Akad. Nauk MoldSSSR, No. 7, 40-46 (1965).
[45] N. N. Krylov, ”Sur une méthode d’intégration approchée contenant comme cas particuliers la méthode de W. Ritz, ainsi que celle des moindres carrés,” C. R. Acad. Sci. Paris, 676-678 (1926) [also in: Selected Works, Vol. 1 [in Russian], Akad. Nauk Ukr. SSR, Kiev (1961), pp. 262-264].
[46] L. D. Kudryavtsev, ”On the solution by the variational method of elliptic equations which degenerate on the boundary of the domain of definition,” Dokl. Akad. Nauk SSSR,108, No. 1, 16-19 (1956). · Zbl 0070.32403
[47] L. D. Kudryavtsev (L. D. Kudrjavcev), Direct and Inverse Imbedding Theorems, Applications to the Solution of Elliptic Equations by Variational Methods, Am. Math. Soc., Providence (1974). · Zbl 0283.46019
[48] B. A. Kupershmidt, ”Lagrangian formalism in the calculus of variations,” Funkts. Anal. Prilozhen.,10, No. 2, 77-78 (1976).
[49] R. Courant and D. Hilbert, Methods of Mathematical Physics, I; II, Partial Differential Equations, Interscience, New York (1966). · Zbl 0121.07801
[50] A. Langenbakh (A. Langenbach), ”On the application of a variational principle to some nonlinear differential equations,” Dokl. Akad. Nauk SSSR,121, No. 2, 214-217 (1958).
[51] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vols. I-III, Springer, New York (1972-73).
[52] A. D. Lyashko, ”On the variational method for nonlinear operator equations,” Kazan. Gos. Univ. Uch. Zap.,125, No. 2, 95-101 (1965 (1966)).
[53] A. D. Lyashko and M. M. Karchevskii, ”An investigation of the method of straight lines for nonlinear elliptic equations,” Zh. Vychisl. Mat. Mat. Fiz.,7, No. 3, 677-680 (1967).
[54] V. I. Man’ko, ”Symplectic group and invariants of quantum systems,” Itogi Nauki i Tekhniki, Ser. Mat. Analiz,22, 59-100 (1984).
[55] A. E. Martynyuk, ”On a certain generalization of a variational method,” Dokl. Akad. Nauk SSSR,117, No. 3, 374-377 (1957). · Zbl 0087.11601
[56] A. E. Martynyuk, ”On the Galerkin moment method,” Uch. Zap. Kazansk. Univ.,117, No. 2, 70 (1957). · Zbl 0087.11601
[57] A. E. Martynyuk, ”Variational methods in boundary value problems for weakly elliptic equations,” Dokl. Akad. Nauk SSSR,129, No. 6, 1222-1225 (1959). · Zbl 0092.10002
[58] A. E. Martynyuk, ”An application of the Galerkin and Galerkin-moments methods to certain partial differential equations of I. N. Vekua type,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 3, 188-204 (1960). · Zbl 0104.32103
[59] G. I. Marchuk and V. I. Agoshkov, Introduction to Projection-Grid Methods [in Russian], Nauka, Moscow (1981). · Zbl 0642.65037
[60] G. I. Marchuk and Yu. A. Kuznetsov, Iterative Methods and Quadratic Functionals [in Russian], Nauka, Novosibirsk (1972).
[61] N. G. Marchuk, ”A large class of Green formulas and conservation laws,” Dokl. Akad. Nauk SSSR,285, No. 6, 1325-1327 (1985). · Zbl 0602.35018
[62] R. Ya. Matsyuk, ”On the existence of a Lagrangian for a system of ordinary differential equations,” Mat. Metody Fiz.-Mekh. Polya, No. 13, 34-38 (1981). · Zbl 0478.34033
[63] R. Ya. Matsyuk, ”On the existence of a Lagrangian for a nonautonomous system of ordinary differential equations,” Mat. Metody Fiz.-Mekh. Polya, No. 20, 16-19 (1984). · Zbl 0536.34007
[64] Yu. A. Mitropol’skii, N. N. Bogolyubov, Jr., A. K. Prikarpatskii, and V. G.. Samoilenko, Integrable Dynamic Systems: Spectral and Differential-Geometric Aspects [in Russian], Naukova Dumka, Kiev (1987).
[65] S. G. Mikhlin, Variational Methods in Mathematical Physics, 2nd edition [in Russian], Nauka, Moscow (1970). · Zbl 0202.36901
[66] Ph. M. Morse and H. Feshbach, Methods of Theoretical Physics, Part I, McGraw?Hill, New York (1953). · Zbl 0051.40603
[67] N. K. Moshchuk, ”On the reduction of the equations of motion of certain nonholonomic Chaplygin systems to the form of Lagrangian and Hamiltonian equations,” Prikl. Mat. Mekh.,51, No. 2, 223-229 (1987). · Zbl 0653.70015
[68] R. G. Mukharlyamev and S. G. Shorokhov, Methodical Recommendations to the Investigation of the Foundations of Symbolic Calculations on a Computer and Their Applications [in Russian], Univ. Druzhby Narodov, Moscow (1991).
[69] S. M. Nikol’skii, ”On the question of solving the polyharmonic equation by a variational method,” Dokl. Akad. Nauk SSSR,38, No. 3, 409-411 (1953).
[70] S. M. Nikol’skii, ”A variational problem,” Mat. Sb.,62, No. 1, 53-75 (1963).
[71] S. P. Novikov, ”The Hamiltonian formalism and a multivalued analogue of Morse theory,” Usp. Mat. Nauk,37, No. 5, 3-49 (1982).
[72] V. S. Novoselov, ”The application of Helmholtz’s method to the study of the motion of Chaplygin’s system,” Vestn. Leningr. Univ. Mat., No. 13, 102-111 (1958). · Zbl 0080.17303
[73] Yu. I. Nyashin, ”On a variational formulation of the nonstationary problem of heat conduction,” Perm. Politekhn. Inst. Sb. Nauchn. Trudov No. 152, 3-9 (1974).
[74] Yu. I. Nyashin, A. N. Skorokhodov, and I. N. Anan’ev, ”A variational method for the computation of a nonstationary temperature field,” Inzh.?Fiz. Zh.,26, No. 3, 770-776 (1974).
[75] P. J. Olver, Applications of Lie Groups to Differential Equations, Springer, New York (1986). · Zbl 0588.22001
[76] J. F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups, Gordon & Breach, New York (1978). · Zbl 0418.35028
[77] A. A. Popova, ”Variational methods of the approximate solution of boundary value problems of mathematical physics with a nonsymmetric operator,” Candidate’s Dissertation, Kiev State Univ., Kiev (1981).
[78] S. I. Pokhozhaev, ”On a constructive method of the calculus of variations,” Dokl. Akad. Nauk SSSR,298, No. 6, 1330-1333 (1988). · Zbl 0717.58012
[79] R. O. Ramires and A. A. German, ”On the problem of the construction of the Lagrange function,” in: Numerical Methods in Problems of Mathematical Physics [in Russian], Univ. Druzhby Narodov, Moscow (1985), pp. 118-120.
[80] I. M. Rapoport, ”The inverse problem of the calculus of variations,” Zh. Inst. Mat. Akad. Nauk USSR, No. 4, 35-40 (1937).
[81] I. M. Rapoport, ”The inverse problem of the calculus of variations,” Izv. Fiz.?Mat. Ob-va pri Kazan. Gos. Univ.,10, Ser. 3, 93-135;11, Ser. 3, 47-69 (1938).
[82] I. M. Rapoport, ”The inverse problem of the calculus of variations,” Dokl. Akad. Nauk SSSR,18, No. 3, 131-135 (1938). · Zbl 0018.22002
[83] V. M. Savchin, ”The Ostrogradskii method and inverse problem of mechanics,” Candidate’s Dissertation, Univ. Druzhby Narodov, Moscow (1984).
[84] V. M. Savchin, Mathematical Methods of the Mechanics of Infinite-Dimensional Nonpotential Systems [in Russian], Univ. Druzhby Narodov, Moscow (1991). · Zbl 0925.70160
[85] V. M. Savchin, ”On the interrelation of potential and Hamiltonian operators,” in: Abstracts of the Reports of the 27th Scientific Conference of the Physico-Mathematical and Natural Sciences Department, Univ. Druzhby Narodov, Izd. Univ. Druzhby Narodov, Moscow (1991), p. 128.
[86] M. G. Slobodyanskii, ”An error estimate of the sought quantity in the solution of linear problems by a variational method,” Dokl. Akad. Nauk SSSR,86, No. 2, 243-246 (1952).
[87] M. G. Slobodyanskii, ”An error estimate of the approximate solutions of linear problems,” Prikl. Mat. Mekh.,17, No. 2, 229-244 (1953).
[88] M. G. Slobodyanskii, ”An approximate solution of some boundary value problems for an elliptic differential equation and error estimates,” Dokl. Akad. Nauk SSSR,89, No. 2, 221-224 (1953).
[89] S. L. Sobolev, Applications of Functional Analysis in Mathematical Physics, Am. Math. Soc., Providence (1963). · Zbl 0123.09003
[90] N. Ya. Sonin, ”On the determination of the maximal and minimal properties of plane curves,” Izv. Varshavsk. Univ., No. 1, 1-68 (1886).
[91] A. S. Sumbatov, ”Integrals that are linear with respect to velocity. Generalization of Jacobi’s theorem,” Itogi Nauki i Tekhniki, Ser. Obshch. Mekh.,4, 3-57 (1979).
[92] A. S. Sumbatov, ”Nonextremality of families of curves defined by dynamic equations of nonholonomic Chaplygin systems,” Differents. Uravn.,11, No. 5, 897-899 (1984). · Zbl 0602.70015
[93] A. S. Sumbatov, ”On an inverse problem of the calculus of variations,” in: Problems on the Investigation of Stability and Stabilization of Motion [in Russian], Akad. Nauk SSSR, Vychisl. Tsentr, Moscow (1985), pp. 105-117.
[94] G. K. Suslov, ”On the Helmholtz kinetic potential,” Mat. Sb.,19, No. 1, 197-210 (1886).
[95] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw?Hill, New York (1965). · Zbl 0176.54902
[96] V. M. Filippov, ”A variational method for solving boundary value problems of mathematical physics, and function spaces,” Differents. Uravn.,15, No. 11, 2056-2065 (1979).
[97] V. M. Filippov, ”Functional spaces and their applications to the solving of parabolic equations by a variational method,” Candidate’s Dissertation. V. A. Steklov Mathematical Institute, Academy of Sciences of the USSR, Moscow (1980).
[98] V. M. Filippov, ”A variational method for solving the wave equation with boundary conditions on the entire boundary of the domain,” in: Differential Equations and Functional Analysis [in Russian], Univ. Druzhby Narodov, Moscow (1983), pp. 114-119.
[99] V. M. Filippov, ”A variational method of solving a nonlocal boundary value problem for a parabolic equation,” in: Differential Equations and Inverse Problems of Dynamics [in Russian], Univ. Druzhby Narodov, Moscow (1983), pp. 26-30.
[100] V. M. Filippov, ”On strongly B-positive operators,” in: Differential Equations and Inverse Problems of Dynamics [in Russian], Univ. Druzhby Narodov, Moscow (1983), pp. 95-99.
[101] V. M. Filippov, ”On the direct variational method of solving complicated boundary value problems for the wave equation,” in: Numerical Methods in Theoretical Physics and Physical Chemistry [in Russian], Univ. Druzhby Narodov, Moscow (1983), pp. 84-88.
[102] V. M. Filippov, ”Some corollaries of the isometry of the spaces W2 k(?) to spaces W 2 k (?),” in: Differential Equations and Functional Analysis [in Russian], Univ. Druzhby Narodov, Moscow (1984), pp. 141-147.
[103] V. M. Filippov, ”On the relation of the least squares method to symmetrization of differential operators,” in: Differential Equations and Functional Analysis [in Russian], Univ. Druzhby Narodov, Moscow (1984), pp. 148-153.
[104] V. M. Filippov, ”A variational method for solving boundary value problems for the wave equation,” Differents. Uravn.,20, No. 11, 1961-1968 (1984).
[105] V. M. Filippov, Variational Principles for Nonpotential Operators [in Russian], Univ. Druzhby Narodov, Moscow (1985). · Zbl 0699.35011
[106] V. M. Filippov, ”Quasiclassical Euler?Lagrange functionals for nonlinear operators,” in: Analogues of Gravitational and Electromagnetic Phenomena [in Russian], Univ. Druzhby Narodov, Moscow (1985), pp. 124-128.
[107] V. M. Filippov, ”On the variational method in spaces with dominating mixed derivative,” in: Proc. All-Union Conf. dedicated to the 80th birthday of Acad. S. M. Nikol’skii [in Russian],180 (1987), pp. 265-266.
[108] V. M. Filippov, ”On dual variational principles for asymmetric equations,” in: Boundary Value Problems of Mathematical Physics and some Problems in the Theory of Function Spaces [in Russian], Univ. Druzhby Narodov, Moscow (1985), pp. 134-140.
[109] V. M. Filippov, On a general approach to symmetrization of differential operators,” Differents. Uravn.,21, No. 3, 539-541 (1985). · Zbl 0573.35002
[110] V. M. Filippov, ”On variational principles for hypoelliptic equations,” Dokl. Akad. Nauk SSSR,285, No. 2, 302-305 (1985). · Zbl 0638.35006
[111] V. M. Filippov, ”On quasiclassical solutions of an inverse problem of the calculus of variations,” Dokl. Akad. Nauk SSSR,285, No. 1, 53-56 (1985). · Zbl 0588.34011
[112] V. M. Filippov, ”Quasiclassical solutions of inverse problems of the calculus of variations and non-Euler classes of functionals and functional spaces,” Doctoral Dissertation, V. A. Steklov Mathematical Institute, Academy of Sciences of the SSSR, Moscow (1986).
[113] V. M. Filippov, ”On a variational principle for an equation of composite type,” in: Differential Equations and Functional Analysis [in Russian], Univ. Druzhby Narodov, Moscow (1986), pp. 110-115.
[114] V. M. Filippov, ”The variational method of V. P. Didenko in spaces with a dominant mixed derivative,” in: Differential Equations and Functional Analysis [in Russian], Univ. Druzhby Narodov, Moscow (1986), pp. 100-109.
[115] V. M. Filippov, ”On a variational method for ultraparabolic equations,” in: Analysis of Information?Computing Systems [in Russian], Univ. Druzhby Narodov, Moscow (1986), pp. 107-111.
[116] V. M. Filippov, ”The variational principle for hypoelliptic equations with constant coefficients,” Differents. Uravn.,22, No. 2, 338-343 (1986). · Zbl 0616.35017
[117] V. M. Filippov, ”On semibounded solutions of inverse problems of the calculus of variations,” Differents. Uravn.,23, No. 9, 1599-1607 (1987). · Zbl 0653.49003
[118] V. M. Filippov and V. M. Savchin, ”Quasiclassical invariant variational problems,” in: General Relativity Theory and Its Applications [in Russian] (1986), pp. 91-98.
[119] V. M. Filippov and V. M. Savchin, ”On the nonexistence of semibounded solutions of inverse problems of the calculus of variations,” Manuscript deposited at VINITI, No. 736-87 (1987).
[120] V. M. Filippov and A. N. Skorokhodov, ”The principle of the minimum of a quadratic functional for the a boundary value problem of heat conduction,” Differents. Uravn.,13, No. 8, 1434-1445 (1977). · Zbl 0394.35049
[121] V. M. Filippov and A. N. Skorokhodov, ”On a quadratic functional for the heat-conduction equation,” Differents. Uravn.,13, No. 6, 1113-1123 (1977). · Zbl 0355.35039
[122] D. F. Kharazov, ”Symmetrizable linear operators which depend monotonically on a parameter, and their applications,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 8, 82-93; No. 11, 90-97 (1967). · Zbl 0157.45401
[123] V. M. Shalov, ”Solution of non-self-adjoint equations by a variational method,” Dokl. Akad. Nauk SSSR,151, No. 3, 511-512 (1963). · Zbl 0211.44503
[124] V. M. Shalov, ”A certain generalization of K. O. Friedrichs’ space,” Dokl. Akad. Nauk SSSR,151, No. 2, 292-294 (1963). · Zbl 0199.45302
[125] V. M. Shalov, ”A variational method for solving non-self-adjoint equations,” Candidate’s Dissertation, V. A. Steklov Mathematical Institute of the Academy of Sciences of the USSR, Moscow (1964).
[126] V. M. Shalov, ”The minimum principle of a quadratic functional for a hyperbolic equation,” Differents. Uravn.,1, No. 10, 1338-1365 (1965).
[127] S. G. Shorokhov, ”The representability of systems of ordinary differential equations in the form of equations of mechanics with a given force structure,” Differents. Uravn.,24, No. 10, 1738-1746 (1988). · Zbl 0665.70008
[128] S. G. Shorokhov, ”Structure of forces and inverse problems of dynamics,” Candidate’s Dissertation, Univ. Druzhby Narodov, Moscow (1989).
[129] S. G. Shorokhov, ”The application of the inverse problem of the calculus of variations to the investigation of the force structure,” in: Variational Principles in Mathematical and Theoretical Physics [in Russian], Univ. Druzhby Narodov, Moscow (1989), pp. 86-97.
[130] S. G. Shorokhov, ”Symbolic computation of alternative Langrangians,” in: Fourth International Conference on Analytic Calculations on a Computer in Physical Investigations (Dubna, May 22-26, 1990), Abstracts of Reports, Dubna (1990), p. 59.
[131] S. G. Shorokhov, ”Variational descriptions of nonpotential systems with the use of symbolic calculations on a computer,” in: All-Union Conf. ”Analytic Transformations on a Computer in the Automatization of Scientific Research,” Vilnius, June 20-23, 1990, Abstracts of Reports [in Russian], IPKRRSNKh, Vilnius (1990), pp. 33-34.
[132] G. L. Shpil’ker, ”A particular solution of the Lagrange variational equation,” Dokl. Akad. Nauk SSSR,242, No. 2, 306-308 (1978).
[133] M. F. Shul’gin, On Certain Differential Equations of Analytical Dynamics and Their Integration [in Russian], SAGU, Tashkent (1958).
[134] C. G. J. Jacobi, Vorlesungen über Dynamik, Reimer, Berlin (1866).
[135] R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd edition, Benjamin, New York (1978). · Zbl 0393.70001
[136] G. Adler, ”Sulla caratterizzabilità dell’equazione del calore dal punto di vista del calcolo delle variazioni,” Magyar Tud. Akad. Mat. Kutató Int. Közl.,2, No. 3/4, 153-157 (1957). · Zbl 0086.30801
[137] H. F. Ahner and A. E. Moore, ”Covariant inverse problem of the calculus of variations,” J. Math. Phys.,18, No. 7, 1367-1373 (1977). · Zbl 0361.49008
[138] S. J. Aldersley, ”Higher Euler operators and some of their applications,” J. Math. Phys.,20, No. 3, 522-531 (1979). · Zbl 0416.58028
[139] D. Anderson, ”Equivalent Lagrangians in generalized mechanics,” J. Math. Phys.,14, No. 7, 934-936 (1973). · Zbl 0262.70019
[140] I. M. Anderson, ”Tensorial Euler?Lagrange expressions and conservation laws,” Aequationes Math.,17, No. 1, 113-114 (1978). · Zbl 0418.49041
[141] I. M. Anderson and T. E. Duchamp, ”On the existence of global variational principles,” Am. J. Math.,102, No. 5, 781-868 (1980). · Zbl 0454.58021
[142] I. M. Anderson and T. E. Duchamp, ”Variational principles for second-order quasilinear scalar equations,” J. Differential Equations,51, No. 1, 1-47 (1984). · Zbl 0533.49010
[143] P. Antonini, G. Marmo, and C. Rubano, ”Alternative Lagrangians and complete integrability: some remarks,” Nuovo Cimento B,86, No. 1, 17-30 (1985).
[144] A. M. Arthurs, ”Dual extremum principles and error bounds for a class of boundary value problems,” J. Math. Anal. Appl.,41, 781-795 (1973). · Zbl 0251.35049
[145] A. M. Arthurs, Complementary Variational Principles, 2nd edition, Clarendon Press, Oxford (1980). · Zbl 0437.35001
[146] R. W. Atherton and G. M. Homsy, ”On the existence and formulation of variational principles for nonlinear differential equations,” Stud. Appl. Math.,54, No. 1, 31-60 (1975). · Zbl 0322.49019
[147] L. Y. Bahar and H. G. Kwatny, ”Some remarks on derivability of linear nonconservative systems from a Lagrangian,” Hadronic J.,3, No. 4, 1262-1280 (1980). · Zbl 0443.70024
[148] L. Y. Bahar and H. G. Kwatny, ”Generalized Lagrangian and conservation law for the damped harmonic oscillator,” Am. J. Phys.,49, No. 11, 1062-1065 (1981).
[149] L. Y. Bahar and H. G. Kwatny, ”Mixed variational principles for some nonselfadjoint dynamical systems,” Mech. Res. Commun.,11, No. 4, 253-263 (1984). · Zbl 0565.70020
[150] A. P. Balachandran, G. Marmo, B. S. Skagerstam, and A. Stern, ”Supersymmetric point particles and monopoles with no strings,” Nuclear Phys. B,164, No. 3, 427-444 (1980).
[151] F. Balatoni, ”Über die Characterisierbarkeit partieller Differentialgleichungen zweiter Ordnung mit Hilfe der Variationsrechnung,” Magyar Tud. Akad. Mat. Kutató Int. Közl.,5, No. 1-2, 229-233 (1960). · Zbl 0142.09103
[152] F. Bampi and A. Morro, ”The inverse problem of the calculus of variations applied to continuum physics,” J. Math. Phys.,23, No. 12, 2312-2321 (1982). · Zbl 0502.73019
[153] F. Bampi and A. Morro, ”Topics in the inverse problem of the calculus of variations,” Boll. Un. Mat. Ital. Suppl.,5, 93-115 (1986). · Zbl 0607.49030
[154] M. F. Barnsley and P. D. Robinson, ”Dual variational principles and Padé-type approximants,” J. Inst. Math. Appl.,14, 229-249 (1974). · Zbl 0286.65035
[155] M. F. Barnsley and P. D. Robinson, ”Bivariational bounds,” Proc. R. Soc. (London) Ser. A,338, 527-533 (1974). · Zbl 0295.49022
[156] H. Bateman, ”On dissipative systems and related variational principles,” Phys. Rev.,38, No. 4, 815-819 (1931). · Zbl 0003.01101
[157] M. S. Berger, ”Bifurcation theory and the type numbers of Marston Morse,” Proc. Nat. Acad. Sci. U.S.A.,69, No. 7, 1737-1738 (1972). · Zbl 0237.58013
[158] L. Bittner, ”Abschätzungen bei Variationsmethoden mit Hilfe von Dualitätssätzen. I,” Numer. Math.,11, No. 2, 129-143 (1968). · Zbl 0264.65040
[159] U. Bleyer and V. D. Skarzhinsky, ”The inverse variational problem applied to Treder’s tetrad theory,” Hadronic J.,6, No. 6, 1711-1721 (1983).
[160] K. Boehm, ”Die Existenzbedingungen eines von den ersten und zweiten Differentialquotienten der Coordinates abhängigen kinetischen Potentials,” J. Reine Angew. Math.,121, 124-140 (1900). · JFM 30.0644.01
[161] M. Borneas, ”The Lagrange function in a general problem,” Nuovo Cimento,16, No. 5, 806-810 (1960). · Zbl 0099.23001
[162] H. Brezis, ”Quelques propriétés des opérateurs monotones et des semi-groupes non linéaires,” in: Nonlinear Operators and the Calculus of Variations, Lecture Notes in Math., No. 543, Springer, Berlin (1976), pp. 56-82.
[163] H. Brezis and I. Ekeland, ”Un principe variationnel associé à certaines équations paraboliques,” C. R. Acad. Sci. Paris, Sér. A?B,282, No. 17, A971-A974; No. 20, A1197?A1198 (1976). · Zbl 0332.49032
[164] F. Cantrijn, M. Crampin, and W. Sarlet, ”Evading the inverse problem for second-order ordinary differential equations by using additional variables,” Inverse Problems,3, No. 1, 51-63 (1987). · Zbl 0616.34008
[165] A. Carasso, ”Error bounds in the final value problem for the heat equation,” SIAM J. Math. Anal.,7, No. 2, 195-199 (1976). · Zbl 0329.65053
[166] C. Carathéodory, ”Über die Variationsrechnung bei mehrfachen Integralen,” Acta Szeged4, 193-216 (1929) [also in: Gesammelte Mathematische Schriften. I, C. H. Beck’sche Verlagsbuchhandlung, München (1954), pp. 401-426]. · JFM 55.0900.01
[167] J. F. Cariñena and L. A. Ibort, ”Non-Noether constants of motion,” J. Phys. A,16, No. 1, 1-7 (1983). · Zbl 0521.58055
[168] J. F. Cariñena, C. López, and E. Martinez, ”A geometric characterisation of Lagrangian second-order differential equations,” Inverse Problems,5, No. 5, 691-705 (1989). · Zbl 0704.34017
[169] J. F. Cariñena, C. López, and M. F. Rañada, ”Geometric Lagrangian approach to first-order systems and applications,” J. Math. Phys.,29, No. 5, 1134-1142 (1988). · Zbl 0644.70012
[170] J. F. Cariñena and E. Martinez, ”Symmetry theory and Lagrangian inverse problem for time-dependent second-order differential equations,” J. Phys. A,22, No. 14, 2659-2665 (1989). · Zbl 0709.58015
[171] G. Caviglia, ”A note on the solubility of the self-adjointness condition for the inverse problem of Lagrangian dynamics,” Boll. Un. Mat. Ital.,4, No. 3, 743-760 (1985). · Zbl 0621.70012
[172] G. Caviglia, ”Helmholtz conditions, covariance, and invariance identities,” Internat. J. Theoret. Phys.,24, No. 4, 377-390 (1985). · Zbl 0571.70017
[173] G. Caviglia, ”Dynamical symmetries, first integrals and the inverse problem of Lagrangian dynamics,” Inverse Problems,1, No. 2, L13-L17 (1985). · Zbl 0593.70002
[174] S.-N. Chow and R. Lauterbach, ”A bifurcation theorem for critical points of variational problems,” Nonlinear Anal.,12, No. 1, 51-61 (1988). · Zbl 0659.58007
[175] D. C. Clark, ”Eigenvalue bifurcation for odd gradient operators,” Rocky Mountain J. Math.,5, 317-336 (1975). · Zbl 0312.47053
[176] W. D. Collins, ”Dual extremum principles for the heat equation,” Proc. R. Soc. Edinburgh,77A, 273-292 (1977). · Zbl 0377.35034
[177] G. C. Constantelos, ”Integrals of motion for Lagrangians including higher-order derivatives,” Nuovo Cimento,21, No. 2, 279-288 (1974).
[178] P. Cooperman, ”An extension of the method of Trefftz for finding local bounds on the solutions of boundary value problems, and on their derivatives,” Quart. Appl. Math.,10, 359-373 (1953). · Zbl 0050.12704
[179] R. Courant, ”Remarks about the Rayleigh?Ritz method,” in: Boundary Problems in Differential Equations, Univ. Wisconsin, Madison (1960), pp. 273-277. · Zbl 0100.12502
[180] E. T. Copson, ”Partial differential equations and the calculus of variations,” Proc. R. Soc. Edinburgh,46, 126-135 (1925). · JFM 52.0509.01
[181] M. Crampin, ”Constants of the motion in Lagrangian mechanics,” Internat. J. Theor. Phys.,16, No. 10, 741-754 (1977). · Zbl 0386.70004
[182] M. Crampin, ”On the differential geometry of the Euler?Lagrange equations, and the inverse problem of Lagrangian dynamics,” J. Phys. A,14, No. 10, 2567-2575 (1981). · Zbl 0475.70022
[183] M. Crampin, ”A note on non-Noether constants of motion,” Phys. Lett. A,95, No. 5, 209-212 (1983).
[184] M. Crampin, ”Defining Euler?Lagrange fields in terms of almost tangent structures,” Phys. Lett. A,95, No. 9, 466-468 (1983).
[185] M. Crampin, ”Tangent bundle geometry for Lagrangian dynamics,” J. Phys. A,16, No. 16, 3755-3772 (1983). · Zbl 0536.58004
[186] M. Crampin, ”Alternative Lagrangians in particle dynamics,” in: Differential Geometry and Its Applications (Brno, 1986), Reidel, Dordrecht (1987), pp. 1-12.
[187] M. Crampin, G. Marmo, and C. Rubano, ”Conditions for the complete integrability of a dynamical system admitting alternative lagrangians,” Phys. Lett. A,97, No. 3, 88-90 (1983).
[188] M. Crampin and F. A. E. Pirani, Applicable Differential Geometry, Cambridge Univ. Press, Cambridge (1986). · Zbl 0606.53001
[189] M. Crampin and G. E. Prince, ”Equivalent lagrangians and dynamical symmetries: some comments,” Phys. Lett. A,108, No. 4, 191-194 (1985).
[190] M. Crampin, G. E. Prince, and G. Thompson, ”A geometrical version of the Helmholtz conditions in time-dependent Lagrangian dynamics,” J. Phys. A,17, No. 7, 1437-1447 (1984). · Zbl 0545.58020
[191] M. Crampin, W. Sarlet, and F. Cantrijn, ”Higher-order differential equations and higher-order lagrangian mechanics,” Math. Proc. Cambridge Philos. Soc.,99, No. 3, 565-587 (1986). · Zbl 0609.58049
[192] M. Crampin and G. Thompson, ”Affine bundles and integrable almost tangent structures,” Math. Proc. Cambridge Philos. Soc.,98, No. 1, 61-71 (1985). · Zbl 0572.53031
[193] D. G. Currie and E. J. Saletan, ”q-Equivalent particle Hamiltonians. I. The classical one-dimensional case,” J. Math. Phys.,7, No. 6, 967-974 (1966).
[194] G. Darboux, Leçons sur la Théorie Générale des Surfaces, III, Gauthier?Villars, Paris (1894).
[195] D. R. Davis, ”The inverse problem of the calculus of variations in higher space,” Trans. Am. Math. Soc.,30, No. 4, 710-736 (1928). · JFM 54.0533.01
[196] D. R. Davis, ”The inverse problem of the calculus of variations in a space of (n + 1) dimensions,” Bull. Am. Math. Soc., Bull. Austral. Math. Soc.,35, No. 3, 371-380 (1929). · JFM 55.0293.05
[197] P. Dedecker, ”Sur une méthode de Bateman dans le problème inverse du calcul des variations,” Acad. Roy. Belgique, Bull. Cl. Sci. (5),35, 774-792 (1949). · Zbl 0036.34702
[198] P. Dedecker, ”Sur un problème inverse du calcul des variations,” Acad. Roy. Belgique, Bull. Cl. Sci. (5),36, 63-70 (1950). · Zbl 0038.06001
[199] S. de Filippo, G. Vilasi, G. Marmo, and M. Salerno, ”A new characterization of completely integrable systems,” Nuovo Cimento B,83, No. 2, 97-112 (1984).
[200] M. de León and P. D. Rodrigues, Generalized Classical Mechanics and Field Theory, North?Holland, Amsterdam (1985). · Zbl 0581.58015
[201] M. De León and P. D. Rodrigues, ”Second-order differential equations and non-conservative Lagrangian mechanics,” J. Phys. A,20, No. 15, 5393-5396 (1987). · Zbl 0639.58014
[202] M. de León and P. D. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North?Holland, Amsterdam (1989). · Zbl 0687.53001
[203] H. H. Denman, ”Invariance and conservation laws in classical mechanics. 1,” J. Math. Phys.,6, No. 11, 1611-1616 (1965). · Zbl 0171.45403
[204] H. H. Denman, ”On linear friction in Lagrange’s equation,” Am. J. Phys.,34, No. 12, 1147-1149 (1966).
[205] H. H. Denman, ”Invariance and conservation laws in classical mechanics. II,” J. Math. Phys.,7, No. 11, 1910-1915 (1966). · Zbl 0171.45403
[206] H. H. Denman, ”Time-translation invariance for certain dissipative classical systems,” Am. J. Phys.,36, No. 6, 516-519 (1968).
[207] H. H. Denman and L. H. Buch, ”Solution of the Hamilton?Jacobi equation for certain dissipative classical mechanical systems,” J. Math. Phys.,14, No. 3, 326-329 (1973). · Zbl 0258.70015
[208] R. de Ritis, G. Marmo, G. Platania, and P. Scudellaro, ”Inverse problems in classical mechanics: dissipative systems,” Internat. J. Theor. Phys.,22, No. 10, 931-946 (1983). · Zbl 0573.70014
[209] J. B. Diaz, ”Upper and lower bounds for quadratic functionals,” Collect. Math.,4, No. 2, 3-49 (1951).
[210] J. B. Diaz, ”Upper and lower bounds for quadratic integrals, and at a point, for solutions of linear boundary value problems,” in: Boundary Problems in Differential Equations, Univ. Wisconsin, Madison (1960), pp. 47-83. · Zbl 0107.31102
[211] J. B. Diaz, ”Upper and lower bounds for quadratic functionals,” in: Proc. Symp. on Spectral Theory and Differential Problems, Oklahoma Agricultural and Mechanical College, Stillwater, Oklahoma (1951), pp. 279-289.
[212] J. B. Diaz and H. J. Greenberg, ”Upper and lower bounds for the solution of the first boundary value problem of elasticity,” Quart. Appl. Math.,6, 326-331 (1948). · Zbl 0033.22004
[213] G. Dinc?, Metode Varia?ionale ?i Aplica?ii, Edit. Tehnic?, Bucharest (1980).
[214] G. Dinc? and I. Ro?ca, ”Une méthode variationelle pour l’étude des opérateurs non linéaires à différentielle Kpositivement définie,” C. R. Acad. Sci. Paris, Sér. A?B,286, No. 1, A25-A28 (1978).
[215] G. Dinc? and I. Ro?ca, ”A variational method for nonlinear operators,” Rev. Roumaine Math. Pures Appl.,25, No. 4, 543-572 (1980).
[216] V. V. Dodonov, V. I. Man’ko, and V. D. Skarzhinskii (V. D. Skarzhinsky), ”The inverse problem of the variational calculus and the nonuniqueness of the quantization of classical systems,” Hadronic J.,4, No. 5, 1734-1804 (1980/81).
[217] V. V. Dodonov, V. I. Man’ko, and V. D. Skarzhinskii (V. D. Skarzhinsky), ”Classically equivalent Hamiltonians and ambiguities of quantization: a particle in a magnetic field,” Nuovo Cimento B,69, No. 2, 185-205 (1982).
[218] J. Douglas, ”Solution of the inverse problem of the calculus of variations,” Proc. Nat. Acad. Sci. U.S.A.,25, 631-637 (1939). · JFM 65.1293.03
[219] J. Douglas, ”Theorems in the inverse problem of the calculus of variations,” Proc. Nat. Acad. Sci. U.S.A.,26, 215-221 (1940). · JFM 66.1272.02
[220] J. Douglas, ”Solution of the inverse problem of the calculus of variations,” Trans. Am. Math. Soc.,50, No. 1, 71-128 (1941). · JFM 67.1038.01
[221] D. G. B. Edelen, Nonlocal Variations and Local Invariance of Fields, American Elsevier, New York (1969). · Zbl 0194.42401
[222] D. G. B. Edelen, Isovector Methods for Equations of Balance, Sijthoff and Noordhoff, Alphen aan den Rijn (1980).
[223] D. G. B. Edelen, Applied Exterior Calculus, Wiley, N. Y. (1985). · Zbl 1101.58301
[224] E. Engels, ”On the Helmholtz conditions for the existence of a Lagrange formalism,” Nuovo Cimento B,26, No. 2, 421-492 (1975).
[225] E. Engels, ”A method for the computation of a Lagrangian within the context of the inverse problem of Newtonian mechanics,” Hadronic J.,1, 465 (1978). · Zbl 0497.70005
[226] O. Espindola, N. L. Teixeira, and M. L. Espindola, ”On the generation of equivalent Hamiltonians,” J. Math. Phys.,27, No. 1, 151-152 (1986). · Zbl 0589.70016
[227] J. R. Farias, ”On the conditions for the existence of a Lagrangian in field theory,” Phys. Rev. D,26, No. 12, 3732-3734 (1982).
[228] J. R. Farias and N. L. Teixeira, ”Equivalent Lagrangians in field theory,” J. Phys. A,16, No. 7, 1517-1521 (1983). · Zbl 0539.70026
[229] C. Ferrario, G. Lo Vecchio, G. Marmo, and G. Morandi, ”Separability of completely integrable dynamical systems admitting alternative Lagrangian descriptions,” Lett. Math. Phys.,9, No. 2, 141-148 (1985). · Zbl 0573.58014
[230] C. Ferrario, G. Lo Vecchio, G. Marmo, G. Morandi, and C. Rubano, ”A separability theorem for dynamical systems admitting alternative Lagrangian descriptions,” J. Phys. A,20, No. 11, 3225-3236 (1987). · Zbl 0663.58011
[231] B. A. Finlayson, The Method of Weighted Residuals and Variational Principles, Academic Press, New York (1972). · Zbl 0319.49020
[232] B. A. Finlayson, ”Existence of variational principles for the Navier?Stokes equation,” Phys. Fluids,15, No. 6, 963-967 (1972). · Zbl 0238.49031
[233] B. A. Finlayson, ”Variational principles for heat transfer,” in: Numerical Properties and Methodologies in Heat Transfer (College Park, Md., 1981), Ser. Comput. Methods Mech. Thermal Sci., Hemisphere, Washington (1983), pp. 17-31.
[234] K. O. Friedrichs, ”Ein Verfahren der Variationsrechnung das Minimum eines Integrals als das Maximum eines anderen Ausdruckes darzustellen,” Nachr. d. Ge. Wiss. Göttingen, Math. Phys. Kl., 13-20 (1929). · JFM 55.0294.01
[235] K. O. Friedrichs, ”On the identity of weak and strong extensions of differential operators,” Trans. Am. Math. Soc.,55, 132-151 (1944). · Zbl 0061.26201
[236] K. O. Friedrichs, ”Symmetric positive linear differential equations,” Commun. Pure Appl. Math.,11, No. 3, 333-418 (1958). · Zbl 0083.31802
[237] B. Fuchssteiner and A. S. Fokas, ”Symplectic structures, their Bäcklund transformations and hereditary symmetries,” Phys. D,4, 47-66 (1981). · Zbl 1194.37114
[238] H. Fujita, ”Contribution to the theory of upper and lower bounds in boundary value problems,” J. Phys. Soc. Jpn.,10, 1-8 (1955).
[239] N. Geffen, ”Alternative variational formulations for first order partial differential systems,” Quart. Appl. Math.,41, No. 2, 245-252 (1983). · Zbl 0517.35017
[240] Y. Gelman and E. J. Saletan, ”q-Equivalent particle Hamiltonians. 2. The two-dimensional classical oscillator,” Nuovo Cimento B,18, No. 1, 53-71 (1973).
[241] F. González-Gascón, ”Symmetries of the Lagrange equations and equivalent Lagrangians,” J. Phys. A,13, No. 6, 1965-1968 (1980). · Zbl 0441.70022
[242] H. J. Greenberg, ”The determination of upper and lower bounds for the solution of the Dirichlet problem,” J. Math. Phys.,27, 161-182 (1948). · Zbl 0031.31001
[243] J. Griffone, ”Structure presque-tangente et connexions. I; II,” Ann. Inst. Fourier,22, No. 1, 287-334; No. 3, 291-338 (1972). · Zbl 0219.53032
[244] M. E. Gurtin, ”Variational principles in the linear theory of viscoelasticity,” Arch. Rational Mech. Anal.,13, 179-191 (1963). · Zbl 0123.40803
[245] M. E. Gurtin, ”Variational principles for linear elastodynamics,” Arch. Rational Mech. Anal.,16, 34-50 (1964). · Zbl 0124.40001
[246] M. E. Gurtin, ”Variational principles for linear initial-value problems,” Quart. Appl. Math.,22, No. 3, 252-256 (1964). · Zbl 0173.37602
[247] M. E. Gurtin and G. Benthien, ”A principle of minimum transformed energy in linear elastodynamics,” Trans. ASME, Ser. E, J. Appl. Mech.,37, 1147-1149 (1970). · Zbl 0208.27001
[248] G. S. Hall and W. Kay, ”Holonomy groups in general relativity,” J. Math. Phys.,29, No. 2, 428-432 (1988). · Zbl 0645.53012
[249] G. Hamel, ”Über die Geometrieen, in denen die Geraden die Kürzesten sind,” Math. Ann.,57, 231-264 (1903). · JFM 34.0527.01
[250] P. Havas, ”The range of application of the Lagrange formalism. I,” Nuovo Cimento,5, Suppl., 363-388 (1957). · Zbl 0077.37202
[251] P. Havas, ”The connection between conservation laws and invariance groups: folklore, fiction, and fact,” Acta Phys. Austr.,38, No. 2, 145-167 (1973).
[252] H. Helmholtz, ”Über die physikalische Bedeutung des Princips der kleinsten Wirkung,” J. Reine Angew. Math.,100, 137-166 (1887). · JFM 18.0941.01
[253] M. Henneaux, ”On a theorem by Hojman and Harleston,” Hadronic J.,4, No. 6, 2137-2143 (1980/81). · Zbl 0572.70023
[254] M. Henneaux, ”On the inverse problem of the calculus of variations,” J. Phys. A,15, No. 3, L93-L96 (1982). · Zbl 0475.70024
[255] M. Henneaux, ”Equations of motion, commutation relations and ambiguities in the Lagrangian formalism,” Ann. Phys.,140, No. 1, 45-64 (1982). · Zbl 0501.70020
[256] M. Henneaux, ”On the inverse problem of the calculus of variations in field theory,” J. Phys. A,17, No. 1, 75-85 (1984). · Zbl 0557.70019
[257] M. Henneaux and L. C. Shepley, ”Lagrangians for spherically symmetric potentials,” J. Math. Phys.,23, No. 11, 2101-2107 (1982). · Zbl 0507.70022
[258] I. Herrera and J. Bielak, ”A simplified version of Gurtin’s variational principles,” Arch. Rational Mech. Anal.,53, No. 2, 131-149 (1974). · Zbl 0288.49018
[259] J. Hersch, ”Une transformation variationnelle apparentée à celle de Friedrichs, conduisant à la méthode des problèmes auxiliaires unidimensionels,” Enseign. Math.,11, 159-169 (1965). · Zbl 0135.32602
[260] D. Hilbert, ”Über das Dirichletsche Prinzip,” Jber. Deutsch. Math.,8, 184-188 (1900). · JFM 31.0418.01
[261] D. Hilbert, ”Über das Dirichletsche Prinzip,” Math. Ann.,59, 161-186 (1904). · JFM 35.0436.02
[262] A. Hirsch, ”Über eine charakteristische Eigenschaft der Differentialgleichungen der Variationsrechnung,” Math. Ann.,49, 49-72 (1897). · JFM 28.0322.01
[263] A. Hirsch, ”Die Existenzbedingungen des verallgemeinerten kinetischen Potentials,” Math. Ann.,50, 429-441 (1898). · JFM 29.0603.01
[264] R. Hojman, S. Hojman, and J. Sheinbaum, ”Shortcut for constructing any Lagrangian from its equations of motion,” Phys. Rev. D,28, No. 6, 1333-1336 (1983).
[265] R. Hojman and J. Zanelli, ”An acceleration-dependent Lagrangian proof of the conserved traces’ theorem,” Nuovo Cimento B,94, No. 1, 87-92 (1986).
[266] S. Hojman, ”Construction of genotopic transformations for first order systems of differential equations,” Hadronic J.,5, No. 1, 174-184 (1981/82). · Zbl 0515.70022
[267] S. Hojman, ”Symmetries of Lagrangians and of their equations of motion,” J. Phys. A,17, No. 12, 2399-2412 (1984). · Zbl 0568.70019
[268] S. Hojman, ”Comment on a paper by Espindola, Teixeira, and Espindola, J. Math. Phys.,27, 151 (1986)],” J. Math. Phys.,27, No. 10, 2489 (1986). · Zbl 0624.70013
[269] S. Hojman and J. Gómez, ”First-order equivalent Lagrangians and conservation laws,” J. Math. Phys.,25, No. 6, 1776-1779 (1984). · Zbl 0567.70017
[270] S. Hojman and H. Harleston, ”Equivalent Lagrangians: multidimensional case,” J. Math. Phys.,22, No. 7, 1414-1419 (1981). · Zbl 0522.70024
[271] S. Hojman and R. Montemayor, ”S-Equivalent Lagrangians for free particles and canonical quantization,” Hadronic J.,3, No. 6, 1644-1657 (1979/80). · Zbl 0478.70021
[272] S. Hojman and S. Ramos, ”Two-dimensional s-equivalent Lagrangians and separability,” J. Phys. A,15, No. 11, 3475-3480 (1982). · Zbl 0516.70026
[273] S. Hojman and L. C. Shepley, ”Lagrangianos equivalentes,” Rev. Mexicana Fís.,28, No. 2, 149-205 (1981/82).
[274] S. Hojman and L. C. Shepley, ”Equivalent Lagrangians in classical field theory,” Found. Phys.,16, No. 5, 465-481 (1986).
[275] S. Hojman and L. F. Urrutia, ”On the inverse problem of the calculus of variations,” J. Math. Phys.,22, No. 9, 1896-1903 (1981). · Zbl 0475.70023
[276] S. Hojman and L. F. Urrutia, ”Physical consequences of the choice of the Lagrangian ? comments (letter),” Phys. Rev. D,26, No. 2, 527-528 (1982).
[277] S. Hojman and F. Zertuche, ”S-Equivalence and symmetries of first-order differential systems,” Nuovo Cimento B,88, No. 1, 1-8 (1985).
[278] G. W. Horndeski, ”Differential operators associated with the Euler?Lagrange operator,” Tensor,28, 303-318 (1974). · Zbl 0289.49045
[279] G. W. Horndeski, ”Sufficiency conditions under which a Lagrangian is an ordinary divergence,” Aequationes Math.,12, 232-241 (1975). · Zbl 0311.49030
[280] I. Horová, ”On the variational principles for partial differential equations,” Arch. Math. (Brno),24, No. 1, 17-23 (1988). · Zbl 0675.35003
[281] L. A. Ibort and C. López-Lacasta, ”On the existence of local and global Lagrangians for ordinary differential equations,” J. Phys. A,23, No. 21, 4779-4792 (1990). · Zbl 0726.58019
[282] E. Ihrig, ”An exact determination of the gravitational potentialsg ij in terms of the gravitational fieldsR i l jk ,” J. Math. Phys.,16, No. 1, 54-55 (1975).
[283] C. G. J. Jacobi, ”Zur Theorie der Variations-Rechnung und der Differential-Gleichungen,” J. Reine Angew. Math.,17, 68-82 (1837). · ERAM 017.0558cj
[284] S. E. Jones and B. Vujanovic, ”On the inverse Lagrangian problem,” Acta Mech.,73, No. 1, 245-251 (1988). · Zbl 0662.70019
[285] H. Kamo and R. Sugano, ”Necessary and sufficient conditions for the existence of a Lagrangian. The case of quasi-linear field equations,” Ann. Physics,128, No. 2, 298-313 (1980). · Zbl 0446.70023
[286] S. Kaplan, ”An analogy between the variational principles of reactor theory and those of classical mechanics,” Nucl. Sci. Eng.,23, No. 3, 234-237 (1965).
[287] M. Kerner, ”Die Differentiale in der allgemeinen Analysis,” Ann. Math.,34, 546-572 (1933). · JFM 59.0415.01
[288] R. M. Kiehn, ”An extension of Hamilton’s principle to include dissipative systems,” J. Math. Phys.,15, No. 1, 9-13 (1974). · Zbl 0277.76023
[289] H. Kielhöfer, ”A bifurcation theorem for potential operators,” J. Funct. Anal.,77, No. 1, 1-8 (1988). · Zbl 0643.47057
[290] M. Sz. Kirkovits, ”Equivalent problems in the calculus of variations whose fundamental functions involve second-order derivatives,” Acta Math. Hung.,43, No. 3-4, 341-346 (1984). · Zbl 0538.49021
[291] J. Klein, ”Espaces variationnels et mécanique,” Ann. Inst. Fourier,12, 1-124 (1962). · Zbl 0281.49026
[292] J. Klein and A. Voutier, ”Formes extérieures génératrices de sprays,” Ann. Inst. Fourier,18, No. 1, 241-260 (1968). · Zbl 0181.49902
[293] J. A. Kobussen, ”Generalized Hamiltonian dynamics for fields,” Hadronic J.,2, No. 2, 321-359 (1979). · Zbl 0422.58028
[294] L. Koenigsberger, ”Über die allgemeinen kinetischen Potentiale,” J. Reine Angew. Math.,121, 141-167 (1900). · JFM 30.0642.02
[295] I. Kolá?, ”On the Hamiltonian formalism in fibered manifolds,” Scripta Fac. Sci. Natur. UJEP Brunensis?Phys.,5, No. 3-4, 249-253 (1975).
[296] I. Kolá?, ”On the Euler?Lagrange differential in fibered manifolds,” Rep. Mathematical Phys.,12, No. 3, 301-305 (1977). · Zbl 0375.58001
[297] D. Krupka, ”Some geometric aspects of variational problems in fibered manifolds,” Folia Fac. Sci. Nat. UJEP, Brun,14, 1-65 (1973).
[298] D. Krupka, ”Of the structure of the Euler mapping,” Arch. Math. (Basel),10, No. 1, 55-61 (1974/75). · Zbl 0337.33012
[299] D. Krupka, ”A geometric theory of ordinary first order variational problems in fibered manifolds. I. Critical sections,” J. Math. Anal. Appl.,49, 180-206 (1975). · Zbl 0312.58002
[300] O. Krupková, ”Lepagean 2-forms in higher order Hamiltonian mechanics. I. Regularity,” Arch. Math. (Brno),22, No. 2, 97-120 (1986). · Zbl 0637.58002
[301] O. Krupková, ”A note on the Helmholtz conditions,” in: Differential Geometry and Its Applications (Brno, 1986), Univ. J. E. Purkyn?, Brno (1987), pp. 181-188.
[302] B. A. Kupershmidt, ”Geometry of jet bundles and the structure of Lagrangian and Hamiltonian formalisms,” in: Geometric Methods in Mathematical Physics (Proc. NSF?CBMS Conf., Univ. Lowell, Lowell, Mass., 1979), Lecture Notes in Math., No. 775, Springer, Berlin (1980), pp. 162-218.
[303] J. Kürschák, ”Über eine charakteristische Eigenschaft der Differentialgleichungen der Variationsrechnung,” Math. Ann.,60, 175-165 (1905).
[304] J. Kürschák, ”Die Existenzbedingungen des verallgemeinerten kinetischen Potentials,” Math. Ann.,62, 148-155 (1906). · JFM 37.0723.03
[305] H. G. Kwatny, L. Y. Bahar, and F. M. Massimo, ”Linear nonconservative systems with asymmetric parameters derivable from a Lagrangian,” Hadronic J.,2, No. 5, 1159-1177 (1979). · Zbl 0432.70031
[306] L. La Paz, ”An inverse problem of the calculus of variations for multiple integrals,” Trans. Am. Math. Soc.,32, No. 3, 509-519 (1930). · JFM 56.0438.03
[307] A. Langenbach, ”Variationsmethoden in der nichtlinearen Elastizitäts- und Plastizitätstheorie,” Wiss. Z. Humboldt-Univ.Berlin Math.?Nat. Reihe,9, 145-164 (1959/60). · Zbl 0094.19502
[308] B. Lawruk and W. M. Tulczyjew, ”Criteria for partial differential equations to be Euler?Lagrange equations,” J. Differential Equations,24, No. 2, 211-225 (1977). · Zbl 0366.35026
[309] P. D. Lax, ”Symmetrizable linear transformations,” Commun. Pure Appl. Math.,7, No. 4, 633-647 (1954). · Zbl 0057.34402
[310] P. Libermann and C.?M. Marle, Symplectic Geometry and Analytical Mechanics, Reidel, Dordrecht (1987). · Zbl 0643.53002
[311] J. L. Lions, ”Sur quelques problèmes aux limites relatifs à des opérateurs différentiels elliptiques,” Bull. Soc. Math. France,83, No. 3, 225-250 (1955). · Zbl 0068.31003
[312] E. Litinsky, ”On the variational form of evolution equations,” Phys. D,17, No. 2, 215-226 (1985). · Zbl 0585.58014
[313] M. Lutzky, ”Non-invariance symmetries and constants of the motion,” Phys. Lett. A,72, No. 2, 86-88 (1979).
[314] M. Lutzky, ”Origin of non-Noether invariants,” Phys. Lett. A,75, No. 1-2, 8-10 (1979).
[315] M. Lutzky, ”Conservation laws and discrete symmetries in classical mechanics,” J. Math. Phys.,22, No. 8, 1626-1627 (1981). · Zbl 0467.70026
[316] F. Magri, ”Variational formulation for every linear equation,” Internat. J. Eng. Sci.,12, No. 6, 537-549 (1974). · Zbl 0282.49043
[317] F. Magri, ”An operator approach to Poisson brackets,” Ann. Phys.,99, No. 1, 196-228 (1976). · Zbl 0346.70014
[318] F. Magri, ”A simple model of the integrable Hamiltonian equation,” J. Math. Phys.,19, No. 5, 1156-1162 (1978). · Zbl 0383.35065
[319] A. Marino and G. Prodi, ”La teoria di Morse per gli spazi di Hilbert,” Rend. Sem. Mat. Univ. Padova,64, 43-68 (1968). · Zbl 0196.15901
[320] G. Marmo and C. Rubano, ”Equivalent Lagrangians and Lax representations,” Nuovo Cimento B,78, No. 1, 70-84 (1983).
[321] G. Marmo and C. Rubano, ”Alternative lagrangians for a charged particle in a magnetic field,” Phys. Lett. A,119, No. 7, 321-324 (1987).
[322] G. Marmo and C. Rubano, ”On the uniqueness of the Lagrangian description for charged particles in external magnetic field,” Nuovo Cimento A,98, No. 4, 387-399 (1987).
[323] G. Marmo and C. Rubano, Particle Dynamics on Fiber Bundles, Bibliopolis, Naples (1988). · Zbl 0704.53057
[324] G. Marmo, C. Rubano, and G. Thompson, ”When does the motion of test particles determine the metric tensor?,” Classical Quantum Gravity,7, No. 11, 2155-2167 (1990). · Zbl 0708.53051
[325] G. Marmo and E. J. Saletan, ”Ambiguities of the Lagrangian and Hamiltonian formalism: transformation properties,” Nuovo Cimento B,40, No. 1, 67-89 (1977).
[326] G. Marmo and E. J. Saletan, ”Q-equivalent particle Hamiltonians. 3. The two-dimensional quantum oscillator,” Hadronic J.,1, No. 3, 955-965 (1978).
[327] G. Marmo, E. J. Saletan, A. Simoni, and B. Vitale, Dynamical Systems. A Differential Geometric Approach to Symmetry and Reduction, Wiley, Chichester (1985). · Zbl 0592.58031
[328] G. Marmo and A. Simoni, ”Q-Dynamical systems and constants of motion,” Lett. Nuovo Cimento,15, No. 6, 179-184 (1976).
[329] J. Marty, ”Valeurs singuliers d’une équation de Fredholm,” C. R. Acad. Sci. Paris,150, 1499-1502 (1910). · JFM 41.0385.02
[330] A. Mayer, ”Die Existenzbedingungen eines kinetischen Potentiales,” Ber. Verhand. Kgl. Sachs. Ges. Wiss. Leipzig,48, 519-529 (1896). · JFM 27.0599.03
[331] C. B. Milikan, ”On the steady motion of viscous, incompressible fluids with particular reference to a variational principle,” Philos. Mag.,7, No. 44, 641-662 (1929). · JFM 55.0466.03
[332] F. Mimura and T. Nôno, ”Conservation laws in nonconservative linear elastodynamics,” Bull. Kyushu Inst. Tech. Math. Natur. Sci., No. 33, 5-19 (1986). · Zbl 0611.73007
[333] F. Mimura and T. Nôno, ”Conservation laws derived from equivalent Lagrangian densities in continuum mechanics,” Bull. Kyushu Inst. Tech. Math. Natur. Sci., No. 33, 21-35 (1986). · Zbl 0611.73006
[334] F. Mimura and T. Nôno, ”Conservation laws for nonconservative continuum dynamics,” Tensor (N. S.),43, No. 1, 42-55 (1986). · Zbl 0617.70015
[335] F. Mimura and T. Nôno, ”The inverse problem of Lagrangian dynamics within the context of the calculus on differential forms,” Tensor (N. S.),48, No. 2, 187-197 (1989). · Zbl 0708.58002
[336] G. Morandi, C. Ferrario, G. Lo Vecchio, G. Marmo, and C. Rubano, ”The inverse problem in the calculus of variations and the geometry of the tangent bundle,” Phys. Rep.,188, Nos. 3 & 4, 147-284 (1990). · Zbl 1211.58008
[337] C. S. Morawetz, ”A weak solution for a system of equations of elliptic?hyperbolic type,” Commun. Pure Appl. Math.,11, No. 3, 315-331 (1958). · Zbl 0081.31201
[338] M. Z. Nashed, ”The convergence of the method of steepest descents for nonlinear equations with variational or quasi-variational operators,” J. Math. Mech.,13, 765-794 (1964). · Zbl 0149.36402
[339] M. Z. Nashed, ”Differentiability and related properties of nonlinear operators: some aspects of the role of differentials in nonlinear functional analysis,” in: Nonlinear Functional Anal. and Appl. (edited by L. B. Rall), Academic Press, New York (1971), pp. 103-309. · Zbl 0236.46050
[340] J. Naumann, ”Variationsmethoden für Existenz und Bifurkation von Lösungen nichtlinearer Eigenwerprobleme. I; II,” Math. Nachr.,54, 285-296 (1972);55, 325-344 (1973). · Zbl 0249.49026
[341] L. J. Negri and E. G. da Silva, ”S-Equivalent Lagrangians in generalized mechanics,” Phys. Rev. D,33, No. 8, 2227-2232 (1986).
[342] B. Noble, Complementary Variational Principles for Boundary Value Problems, Univ. of Wisconsin Press (1964).
[343] B. Noble and M. J. Sewell, ”On dual extremum principles in applied mathematics,” J. Inst. Math. Appl.,9, No. 2, 123-193 (1972). · Zbl 0236.49002
[344] E. Noether, ”Invariante Variationsprobleme,” Nachr. v. d. Ges. d. Wiss. zu Göttingen, 235-257 (1918) [also in: Collected Papers, Springer, Berlin (1983), pp. 248-270.] · JFM 46.0770.01
[345] V. Ob?deanu and V. Marinca, ”Sur le problème inverse dans la mécanique newtonienne,” An Univ. Timi?oara Ser. ?tiin?. Mat.,25, No. 1, 49-53 (1987). · Zbl 0635.70004
[346] V. Ob?deanu and V. Marinca, ”Sur le problème inverse dans la mécanique newtonienne,” Tensor (N. S.),48, No. 1, 30-35 (1989). · Zbl 0850.70058
[347] V. Ob?deanu and V. Marinca, ”Le problème inverse dans la mécanique newtonienne. 3 (Formalisme Hamiltonien), Semin. Mec. Univ. Timi?oara, No. 6, 1-24 (1988).
[348] V. Marinca and V. Ob?deanu, ”Forme de Lagrange d’un système routhien,” in: The Proceedings of the Fifth National Seminar of Finsler and Lagrange Spaces (Bra?ov, 1988), Soc. ?tiin?e Mat. R. S. România, Bucharest (1989), pp. 227-232.
[349] V. Ob?deanu and V. Marinca, ”Le problème inverse dans la mécanique newtonienne en formalisme birkhoffien,” Semin. Mec. Univ. Timi?oara, No. 12, 1-35 (1988). · Zbl 0659.70004
[350] S. Okubo, ”Does the equation of motion determine commutation relation?,” Phys. Rev. D,22, No. 4, 919-923 (1980).
[351] S. Okubo, ”Canonical quantization of some dissipative systems and nonuniqueness of Lagrangians,” Phys. Rev. A,23, No. 6, 2776-2784 (1981).
[352] P. J. Olver, ”On the Hamiltonian structure of evolution equations,” Math. Proc. Cambridge Philos. Soc.,88, No. 1, 71-88 (1980). · Zbl 0445.58012
[353] P. J. Olver and C. Shakiban, ”A resolution of the Euler operator. I,” Proc. Am. Math. Soc.,69, 223-239 (1978). · Zbl 0395.49002
[354] Z. Oziewicz, ”Classical mechanics: inverse problem and symmetries,” Rep. Math. Phys.,22, No. 1, 91-111 (1985). · Zbl 0607.70002
[355] F. Pardo, ”The Helmholtz conditions in terms of constants of motion in classical mechanics,” J. Math. Phys.,30, No. 9, 2054-2061 (1989). · Zbl 0676.70023
[356] W. V. Petryshin, ”Direct and iterative methods for the solution of linear operator equations in Hilbert space,” Trans. Am. Math. Soc.,105, 136-175 (1962). · Zbl 0106.09301
[357] W. V. Petryshin, ”On a class of K-p. d. and non-K-p.d. operators and operator equations,” J. Math. Anal. Appl.,10, 1-24 (1965). · Zbl 0135.36503
[358] W. V. Petryshin, ”On the extension and the solution of nonlinear operator equations,” Illinois J. Math.,10, No. 2, 255-274 (1966). · Zbl 0139.31503
[359] G. C. Pomraning, ”Complementary variational principles and their application to neutron transport problems,” J. Math. Phys.,8, No. 10, 2096-2108 (1967).
[360] G. C. Pomraning, ”Reciprocal and canonical forms of variational problems involving linear operators,” J. Math. Phys.,47, No. 2, 155-169 (1968). · Zbl 0159.16503
[361] G. Prince, ”Toward a classification of dynamical symmetries in classical mechanics,” Bull. Austral. Math. Soc.,27, No. 1, 53-71 (1983). · Zbl 0495.58014
[362] G. Prince, ”A complete classification of dynamical symmetries in classical mechanics,” Bull. Austral. Math. Soc.,32, No. 2, 299-308 (1985). · Zbl 0578.58018
[363] P. H. Rabinowitz, ”A bifurcation theorem for potential operators,” J. Funct. Anal.,25, 412-424 (1977). · Zbl 0369.47038
[364] M. Rajan, ”Direct methods of solution for problems in mechanics from invariance principles,” Hadronic J.,9, No. 1, 13-24 (1986). · Zbl 0603.70021
[365] L. B. Rall, ”Variational methods for nonlinear integral equations,” in: Nonlinear Integral Equations, Univ. Wisconsin Press, Madison, Wis. (1964), pp. 155-189.
[366] L. B. Rall, ”On complementary variational principles,” J. Math. Anal. Appl.,14, 174-184 (1966). · Zbl 0135.32502
[367] M. F. Rañada, ”Time-dependent Lagrangian systems: a geometric approach using semibasic forms,” J. Phys. A,23, No. 15, 3475-3482 (1990). · Zbl 0707.70014
[368] T. H. Rawles, ”The invariant integral and the inverse problem in the calculus of variations,” Trans. Am. Math. Soc.,30, No. 4, 765-784 (1928). · JFM 54.0534.01
[369] M. Razavy, ”Q-Equivalent Hamiltonian operators,” Can. J. Phys.,50, No. 17, 2037-2047 (1972).
[370] M. Razavy and F. J. Kennedy, ”Generalized phase space formulation of the Hamiltonian dynamics,” Can. J. Phys.,52, No. 16, 1532-1546 (1974). · Zbl 0982.70511
[371] M. Razavy, ”On the quantization of dissipative systems,” J. Phys. B,26, No. 2, 201-206 (1977).
[372] M. Razavy, ”Hamilton’s principal function for the Brownian motion of a particle and the Schrödinger?Langevin equation,” Can. J. Phys.,56, No. 3, 311-320 (1978). · Zbl 1043.82536
[373] M. Razavy, ”Quantum-mechanical irreversible motion of an infinite chain,” Can. J. Phys.,57, No. 10, 1731-1737 (1979). · Zbl 1043.82519
[374] K. Rektorys, ”On application of direct variational methods to the solution of parabolic boundary value problems of arbitrary order in the space variables,” Czechoslovak Math. J.,21, 318-339 (1971). · Zbl 0217.41601
[375] J. N. Reddy, A mathematical theory of complementary?dual variational principles and mixed finite-element approximations of linear boundary value problems in continuum mechanics. Ph. D. Thesis, Univ. of Alabama in Huntsville (1974).
[376] J. N. Reddy, ”A note on mixed variational principles for initial-value problems,” Quart. J. Mech. Appl. Math.,28, No. 1, 123-132 (1975). · Zbl 0297.49021
[377] M. Reeken, ”Stability of critical points under small perturbations. Part II: Analytic theory,” Manuscripta Math.,8, 69-92 (1973). · Zbl 0248.58004
[378] T. Reid, ”Symmetrizable completely continuous linear transformations in Hilbert space,” Duke Math. J.,18, 41-56 (1951). · Zbl 0042.36002
[379] Ch. Riquier, Les Systèmes d’Équations aux Dérivées Partielles, Gauthier?Villars, Paris (1910).
[380] P. D. Robinson, ”Complementary variational principles,” in: Nonlinear Functional Analysis and Applications (edited by L. B. Rall), Academic Press, New York (1971), pp. 507-576.
[381] G. Rosen, Formulations of Classical and Quantum Dynamical Theory, Academic Press, New York (1969). · Zbl 0195.28102
[382] C. Ryan, ”Hamiltonian formalism for general Lagrangian systems in an exceptional case,” J. Math. Phys.,13, No. 3, 283-285 (1972). · Zbl 0236.70020
[383] R. S. Sandhu and K. S. Pister, ”A variational principle for linear coupled field problems in continuum mechanics,” Internat. J. Eng. Sci.,8, No. 12, 989-999 (1970). · Zbl 0215.28701
[384] R. S. Sandhu and K. S. Pister, ”Variational principles for boundary value and initial?boundary value problems in continuum mechanics,” Internat. J. Solids Structures,7, 639-654 (1971). · Zbl 0228.73014
[385] R. M. Santilli, ”Necessary and sufficient conditions for the existence of a Lagrangian in field theory. I. Variational approach to self-adjointness for tensorial field equations,” Ann. Phys.,103, No. 2, 354-408 (1977). · Zbl 0354.49023
[386] R. M. Santilli, ”Necessary and sufficient conditions for the existence of a Lagrangian in field theory. II. Direct analytic representations of tensorial field equations,” Ann. Phys.,103, No. 2, 409-468 (1977). · Zbl 0354.49024
[387] R. M. Santilli, ”Necessary and sufficient conditions for the existence of a Lagrangian in field theory. III. Generalized analytic representations of tensorial field equations,” Ann. Phys.,105, No. 2, 227-258 (1977). · Zbl 0364.49018
[388] R. M. Santilli, Foundations of Theoretical Mechanics. I. The Inverse Problem in Newtonian Mechanics, Springer, New York (1978). · Zbl 0401.70015
[389] R. M. Santilli, Foundations of Theoretical Mechanics. II. Birkhoffian Generalization of Hamiltonian Mechanics, Springer, New York (1983). · Zbl 0536.70001
[390] L. Sarason, ”Differentiable solutions of symmetrizable and singular symmetric first order systems,” Arch. Rational Mech. Anal.,26, No. 5, 357-384 (1967). · Zbl 0162.40901
[391] W. Sarlet, ”Invariance and conservation laws for Lagrangian systems with one degree of freedom,” J. Math. Phys.,19, No. 5, 1049-1054 (1978). · Zbl 0388.70018
[392] W. Sarlet, ”On the transition between second-order and first-order systems within the context of the inverse problem of Newtonian mechanics,” Hadronic J.,2, No. 2, 407-432 (1979). · Zbl 0497.70006
[393] W. Sarlet, ”On linear nonconservative systems derivable from a variational principle,” Hadronic J.,3, No. 2, 765-793 (1979/80). · Zbl 0441.70025
[394] W. Sarlet, ”The Helmholtz conditions revisited. A new approach to the inverse problem of Lagrangian dynamics,” J. Phys. A,15, No. 5, 1503-1517 (1982). · Zbl 0537.70018
[395] W. Sarlet, ”Note on linear systems derivable from a variational principle,” Phys. Lett. A,95, No. 2, 72-75 (1983).
[396] W. Sarlet, ”Note on equivalent Lagrangians and symmetries,” J. Phys. A,16, No. 7, L229-L233 (1983). · Zbl 0514.58014
[397] W. Sarlet, ”Geometrical structures related to second-order equations,” in: Differential Geometry and Its Applications (Brno, 1986), Reidel, Dordrecht (1987), pp. 279-299.
[398] W. Sarlet, ”Contribution to the study of symmetries, first integrals, and the inverse problem of the calculus of variations in theoretical mechanics,” Acad. Analecta,49, No. 1, 27-57 (1987).
[399] W. Sarlet and L. Y. Bahar, ”Quadratic integrals for linear nonconservative systems and their connection with the inverse problem of Lagrangian dynamics,” Internat. J. Non-Linear Mech.,16, No. 3-4, 271-281 (1981). · Zbl 0489.70006
[400] W. Sarlet and F. Cantrijn, ”On some aspects of the inverse problem for general first-order systems,” Hadronic J.,1, No. 1, 101-133 (1978). · Zbl 0446.34017
[401] W. Sarlet and F. Cantrijn, ”Canonical transformations and the Hamilton?Jacobi problem for general first-order systems derivable from a variational principle,” Hadronic J.,1, No. 5, 1497-1521 (1978). · Zbl 0449.34025
[402] W. Sarlet, F. Cantrijn, and M. Crampin, ”A new look at second-order equations and Lagrangian mechanics,” J. Phys. A,17, No. 10, 1999-2009 (1984). · Zbl 0542.58011
[403] W. Sarlet, F. Cantrijn, and M. Crampin, ”Pseudosymmetries, Noether’s theorem and the adjoint equation,” J. Phys. A,20, No. 6, 1365-1376 (1987). · Zbl 0623.58045
[404] W. Sarlet and M. Crampin, ”Some recent results on symmetries of Lagrangian systems re-examined,” J. Phys. A,18, No. 14, 2849-2855 (1985). · Zbl 0579.70018
[405] W. Sarlet, E. Engels, and L. Y. Bahar, ”Time-dependent linear systems derivable from a variational principle,” Internat. J. Eng. Sci.,20, No. 1, 55-66 (1982). · Zbl 0477.34006
[406] W. Sarlet, G. E. Prince, and M. Crampin, ”Adjoint symmetries for time-dependent second-order equations,” J. Phys. A,23, No. 8, 1335-1347 (1990). · Zbl 0713.58018
[407] D. J. Saunders, The Geometry of Jet Bundles, Cambridge Univ. Press, Cambridge (1989). · Zbl 0665.58002
[408] V. M. Savchin, ”A possible generalization of the field-theoretical Hamilton’s equations,” Hadronic J.,11, No. 6, 279-286 (1988). · Zbl 0673.70017
[409] R. L. Schafir, ”The variational principle and natural transformations. I. Autonomous dynamical systems,” Math. Proc. Cambridge Philos. Soc.,90, No. 3, 537-560 (1981). · Zbl 0495.49030
[410] R. L. Schafir, ”The variational principle and natural transformations. II. Time dependent theory,” Math. Proc. Cambridge Philos. Soc.,91, No. 2, 331-341 (1982). · Zbl 0528.49027
[411] R. L. Schafir, ”Functional analytic versus finite-dimensional methods in the inverse problem of the calculus of variations,” Hadronic J.,7, No. 3, 531-539 (1984). · Zbl 0546.70023
[412] M. J. Sewell, ”On dual approximation principles and optimization in continuum mechanics,” Philos. Trans. R. Soc. London, Ser. A,265, 319-351 (1969/70). · Zbl 0291.73003
[413] C. Shakiban, ”A resolution of the Euler operator. II,” Math. Proc. Cambridge Philos. Soc.,89, 501-510 (1981). · Zbl 0475.49011
[414] B. G. Schmidt, ”Conditions on a connection to be a metric connection,” Commun. Math. Phys.,29, 55-59 (1973). · Zbl 0243.53019
[415] J. P. O. Silberstein, ”Symmetrisable operators. II; III,” J. Austral. Math. Soc.,4, No. 1, 15-30; 31-48 (1964). · Zbl 0123.31501
[416] V. D. Skarzhinskii (V. D. Skarzhinsky), Ambiguities of quantization procedure and choice of the Hamiltonian,” in: Differential Geometry and Its Applications (Brno, 1986), Reidel, Dordrecht (1987), pp. 329-338.
[417] W. Smith, ”Complementary variational principles for the solution of a large class of operator equations,” in: Internat. Sympos. Variational Methods in Engineering, Vol. 1, Southampton (1973), pp. 1/26-1/41.
[418] P. Smith, ”Approximate operators and dual extremum principles for linear problems,” J. Inst. Math. Appl.,22, No. 4, 457-465 (1978). · Zbl 0392.49024
[419] P. G. Sona, ”On the Lagrangian and Hamiltonian formalism for nonconservative forces,” Energia Nucl.,13, No. 6, 318-322 (1966).
[420] A. P. Stone, ”Conservation laws and differential concomitants,” J. Differential Geom.,15, No. 4, 595-603 (1980). · Zbl 0451.58003
[421] J. L. Synge, ”The method of hypercircle in function space for boundary value problems,” Proc. R. Soc. London Ser. A,191, 447-467 (1947). · Zbl 0029.05503
[422] J. L. Synge, ”The method of the hypercircle in elasticity when body forces are present,” Quart. Appl. Math.,6, 15-19 (1948). · Zbl 0029.28101
[423] F. Takens, ”A global version of the inverse problem of the calculus of variations,” J. Differential Geom.,14, 543-562 (1979). · Zbl 0463.58015
[424] A. Tartaglia, ”General Lagrangians for the motion of a point particle in a viscous medium and the problem of quantization,” Nuovo Cimento B,57, No. 1, 131-145 (1980).
[425] J. J. Telega, ”An operator approach to the formulation of variational principles for plastic solids,” Mech. Teor. Stos.,14, No. 4, 557-570 (1976). · Zbl 0373.73045
[426] J. J. Telega, ”On variational formulations for nonlinear, nonpotential operators,” J. Inst. Math. Appl.,24, No. 2, 175-195 (1979). · Zbl 0417.47029
[427] G. Thompson, ”Second-order equation fields and the inverse problem of Lagrangian dynamics,” J. Math. Phys.,28, No. 12, 2851-2857 (1987). · Zbl 0638.70013
[428] E. Tonti, ”Variational principles in electromagnetism,” Rend. Inst. Lombardo, Acad. Sci. e Lett.,102, No. 5, 845-861 (1968). · Zbl 0194.42501
[429] E. Tonti, ”Variational formulation of nonlinear differential equations. I; II,” Acad. Roy. Belg. Bull. Cl. Sci.,55, No. 3, 137-166; No. 4, 262-278 (1969). · Zbl 0182.11402
[430] E. Tonti, ”A systematic approach to the search for variational principles,” in: Internat. Sympos. Variational Methods in Engineering, Vol. 1, Southampton (1973), pp. 1/1-1/11. · Zbl 0304.49034
[431] E. Tonti, ”On the variational formulation for linear initial value problems,” Ann. Mat. Pura Appl.,95, 331-359 (1973). · Zbl 0278.49047
[432] E. Tonti, ”A general solution of the inverse problem of the calculus of variations,” Hadronic J.,5, No. 4, 1404-1450 (1981/82). · Zbl 0503.35008
[433] E. Tonti, ”Variational formulation for every nonlinear problem,” Internat. J. Eng. Sci.,22, No. 11-12, 1343-1371 (1984). · Zbl 0558.49022
[434] E. Trefftz, ”Ein Gegenstück zum Ritzschen Verfahren,” Verhandl. d. 2 Internat. Kongr. Tech. Mech. (Zürich, 1927), (1927), pp. 131-138. · JFM 52.0483.02
[435] W. M. Tulczyjew, ”An intrinsic geometric construction for the Lagrange derivative,” Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom, Phys.,23, No. 9, 963-969 (1975). · Zbl 0325.70004
[436] W. M. Tulczyjew, ”The Lagrange complex,” Bull. Soc. Math. France,105, No. 4, 419-431 (1977). · Zbl 0408.58020
[437] H. R. van der Vaart, ”Variational principle for certain nonconservative systems,” Am. J. Phys.,35, No. 5, 419-423 (1967).
[438] A. L. Vanderbauwhede, ”Potential operator and the inverse problem of classical mechanics,” Hadronic J.,1, No. 4, 1177-1197 (1978). · Zbl 0431.47033
[439] A. L. Vanderbauwhede, ”Potential operators and variational principles: a generalization,” Hadronic J.,2, No. 3, 620-641 (1979). · Zbl 0431.47032
[440] A. L. Vanderbauwhede, ”The inverse problem of nonlinear dynamical systems: an alternative approach,” Hadronic J.,4, No. 5, 1889-1915 (1980/81). · Zbl 0471.70028
[441] W. Velte, Direkte Methoden der Variationsrechnung, Teubner, Stuttgart (1976). · Zbl 0333.49035
[442] W. Velte, ”Komplementäre Extremalprobleme,” in: Methoden und Verfahren der Mathematischen Physik., Vol. 15, Bibliographisches Inst., Mannheim (1976), pp. 1-41. · Zbl 0538.49003
[443] A. M. Vinogradov, ”The C-spectral sequence, Lagrangian formalism, and conservation laws. I. The linear theory,” J. Math. Anal. Appl.,100, No. 1, 1-40 (1984). · Zbl 0548.58014
[444] A. M. Vinogradov, ”The C-spectral sequence, Lagrangian formalism, and conservation laws. II. The nonlinear theory,” J. Math. Anal. Appl.,100, No. 1, 41-129 (1984). · Zbl 0548.58015
[445] V. Volterra, Leçons sur les Fonctions de Lignes, Gauthier?Villars, Paris (1913).
[446] K. Washizu, ”Bounds for solutions of boundary value problems in elasticity,” J. Math. Phys.,32, No. 2-3, 117-128 (1953). · Zbl 0051.41004
[447] H. F. Weinberger, ”Upper and lower bounds for torsional rigidity,” J. Math. Phys.,32, No. 1, 54-62 (1953). · Zbl 0051.41203
[448] C. C. Yan, ”Construction of Lagrangians and Hamiltonians from the equation of motion,” Am. J. Phys.,46, No. 6, 671-675 (1978).
[449] C. N. Yang and D. Feldman, ”The S-matrix in the Heisenberg representation,” Phys. Rev.,79, No. 6, 972-978 (1950). · Zbl 0038.40701
[450] A. C. Zaanen, ”Über vollstetige symmetrische und symmetrisierbare Operatoren,” Nieuw. Arch. Wiskunde (2),22, 57-80 (1943). · Zbl 0028.41102
[451] B. Zainea, ”Metoda energetic? generalizat?,” An. Univ. Bucure?ti Mat.?Mec.,21, No. 2, 119-128 (1972).
[452] S. Zaremba, ”Sur un problème toujour possible comprenant a titre de cas particuliers, le problème de Dirichlet et celui de Neumann,” J. Math. Pures Appl.,6, No. 3, 127-163 (1927). · JFM 53.0459.02
[453] S. Zaremba, ”Sur le principle de minimum,” Bull. Int. Acad. Sci. Cracovie, Cl. Sci., No. 7, 197-264.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.