×

Algebraic properties of Manin matrices. I. (English) Zbl 1230.05043

Summary: We study a class of matrices with noncommutative entries, which were first considered by Yu.I. Manin in 1988 in relation with quantum group theory. They are defined as “noncommutative endomorphisms” of a polynomial algebra. More explicitly their defining conditions read: 1) elements in the same column commute; 2) commutators of the cross terms are equal: \([M_{ij}, M_{kl}] = [M_{kj}, M_{il}]\) (e.g. \([M_{11},M_{22}] = [M_{21},M_{12}]\)). The basic claim is that despite noncommutativity many theorems of linear algebra hold true for Manin matrices in a form identical to that of the commutative case. Moreover in some examples the converse is also true. The present paper gives a complete list and detailed proofs of algebraic properties of Manin matrices known up to the moment; many of them are new.
In particular we provide complete proofs that an inverse to a Manin matrix is again a Manin matrix and for the Schur formula for the determinant of a block matrix; we generalize the noncommutative Cauchy-Binet formulas discovered recently [S. Caracciolo, A.D. Sokal and A. Sportiello, Electron. J. Comb. 16, No. 1, Research Paper R103, 43 p. (2009; Zbl 1192.15001), arXiv:0809.3516], which includes the classical Capelli and related identities. We also discuss many other properties, such as the Cramer formula for the inverse matrix, the Cayley-Hamilton theorem, Newton and MacMahon-Wronski identities, Plücker relations, Sylvester’s theorem, the Lagrange-Desnanot-Lewis Caroll formula, the Weinstein-Aronszajn formula, some multiplicativity properties for the determinant, relations with quasideterminants, calculation of the determinant via Gauss decomposition, conjugation to the second normal (Frobenius) form, and so on and so forth. We refer to [A.V. Chervov and G. Falqui, J. Phys. A, Math. Theor. 41, No. 19, Article ID 194006, 28 p. (2008; Zbl 1151.81022), arXiv:0711.2236 and V. Rubtsov, A.V. Silantev and D.V. Talalaev, SIGMA, Symmetry Integrability Geom. Methods Appl. 5, Paper 110, 22 p., electronic only (2009; Zbl 1190.37079)] for some applications.
The bibliography contains 118 items.

MSC:

05A19 Combinatorial identities, bijective combinatorics
15B33 Matrices over special rings (quaternions, finite fields, etc.)
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory

Software:

QuantumMACMAHON
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Adjamagbo, K., Panorama de la theorique des determinants sur un anneau non commutatif, Bull. Sci. Math., 117, 401-420 (1993) · Zbl 0807.16031
[2] Morozov, A.; Shakirov, Sh., Analogue of the identity Log Det = Trace Log for resultants · Zbl 1214.15005
[3] Babelon, O.; Talon, M., Riemann surfaces, separation of variables and classical and quantum integrability, Phys. Lett. A, 312, 71-77 (2003) · Zbl 1071.37510
[4] Banica, T.; Bichon, J.; Collins, B., Quantum permutation groups: A survey, (Noncommutative Harmonic Analysis with Applications to Probability. Noncommutative Harmonic Analysis with Applications to Probability, Banach Center Publ., vol. 78 (2007), Polish Acad. Sci.: Polish Acad. Sci. Warsaw), 13-34 · Zbl 1140.46329
[5] Bareiss, E. H., Sylvester’s identity and multistep integer-preserving Gaussian elimination, Math. Comp., 22, 565-578 (1968) · Zbl 0187.09701
[6] Berenstein, A.; Zelevinsky, A., String bases for quantum groups of type \(A_r\), (I.M. Gelfand Seminar. I.M. Gelfand Seminar, Adv. Sov. Math., vol. 16 (1993), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 51-89 · Zbl 0794.17007
[7] Biane, P., Approximate factorization and concentration for characters of symmetric groups, Int. Math. Res. Not., 2001, 179-192 (2001) · Zbl 1106.20304
[8] Bracken, A.; Green, H., Vector operators and a polynomial identity for SO(n), J. Math. Phys., 12, 2099-2106 (1971)
[9] Bressoud, D., Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture (1999), Cambridge University Press · Zbl 0944.05001
[10] Caldero, P.; Marsh, R., A multiplicative property of quantum flag minors II, J. London Math. Soc. (2), 69, 608-622 (2004) · Zbl 1053.17009
[11] Capelli, A., Uber die Zuruckfuhrung der Cayley’schen Operation \(Ω\) auf gewohnliche Polar-Operationen, Math. Ann., 29, 331-338 (1887) · JFM 19.0151.01
[12] Caracciolo, S.; Sportiello, A.; Sokal, A. D., Noncommutative determinants, Cauchy-Binet formulae, and Capelli-type identities. I. Generalizations of the Capelli and Turnbull identities · Zbl 1192.15001
[13] Cartier, P.; Foata, D., Problemes combinatoires de commutation et rearrangements, Lecture Notes in Math., vol. 85 (1969), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 0186.30101
[14] Chari, V.; Pressley, A., A Guide to Quantum Groups (1994), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0839.17009
[15] Chervov, A., Traces of creation-annihilation operators and Fredholm’s formulas, Funct. Anal. Appl., 32, 71-74 (1998) · Zbl 0921.47013
[16] Chervov, A.; Falqui, G., Manin matrices and Talalaev’s formula, J. Phys. A, 41, 194006 (2008) · Zbl 1151.81022
[17] Chervov, A.; Molev, A., On higher order Sugawara operators · Zbl 1225.17031
[18] Chervov, A.; Talalaev, D., Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence · Zbl 1179.82052
[19] Chervov, A.; Falqui, G.; Rybnikov, L., Limits of Gaudin systems: Classical and quantum cases, SIGMA Symmetry Integrability Geom. Methods Appl., 5, 029 (2009), 17 pp · Zbl 1160.82316
[20] A. Chervov, G. Falqui, V. Rubtsov, A. Silantiev, in press; A. Chervov, G. Falqui, V. Rubtsov, A. Silantiev, in press
[21] Demidov, E. E.; Manin, Yu. I.; Mukhin, E. E.; Zhdanovich, D. V., Non-standard quantum deformations of GL(n) and constant solutions of the Yang-Baxter equation, Progr. Theoret. Phys. Suppl., 102, 203-218 (1990) · Zbl 0784.17017
[22] Dieudonné, J., Les determinantes sur un corps non-commutatif, Bull. Soc. Math. France, 71, 27-45 (1943) · Zbl 0028.33904
[23] Dodgson, C. L., Condensation of determinants, Proc. R. Soc. London, 15, 150-155 (1866)
[24] Domokos, M., Cayley-Hamilton theorem for \(2 \times 2\) matrices over the Grassmann algebra, Ring Theory. Ring Theory, Miskolc, 1996. Ring Theory. Ring Theory, Miskolc, 1996, J. Pure Appl. Algebra, 133, 69-81 (1998) · Zbl 0941.15026
[25] Domokos, M.; Lenagan, T. H., The traces of quantum powers commute · Zbl 1081.16047
[26] Enriquez, B.; Rubtsov, V., Hitchin systems, higher Gaudin operators and \(r\)-matrices, Math. Res. Lett., 3, 343-357 (1996) · Zbl 0871.58038
[27] Enriquez, B.; Rubtsov, V., Commuting families in skew fields and quantization of Beauville’s fibration, Duke Math. J., 119, 197-219 (2003) · Zbl 1052.53065
[28] Etingof, P.; Pak, I., An algebraic extension of the MacMahon Master theorem, Proc. Amer. Math. Soc., 136, 2279-2288 (2008) · Zbl 1191.05018
[29] Ewen, H.; Ogievetsky, O.; Wess, J., Quantum matrices in two dimensions, Lett. Math. Phys., 22, 297-305 (1991) · Zbl 0754.17012
[30] Faddeev, L. D.; Takhtajan, L. A., Hamiltonian Methods in the Theory of Solitons (1987), Springer-Verlag: Springer-Verlag Berlin, x+592 pp · Zbl 1327.39013
[31] Faddeev, L. D.; Takhdadjan, L. A.; Sklyanin, E. K., Quantum inverse problem method I, Theoret. Math. Phys., 40, 194-220 (1979)
[32] Feigin, B.; Frenkel, E.; Reshetikhin, N., Gaudin model, Bethe Ansatz and critical level, Comm. Math. Phys., 166, 27-62 (1994) · Zbl 0812.35103
[33] Fioresi, R., Commutation relations among generic quantum minors in \(O_q(M_n(k))\), J. Algebra, 280, 655-682 (2004) · Zbl 1072.16035
[34] Flaschka, H.; Millson, J., Bending flows for sums of rank one matrices, Canad. J. Math., 57, 114-158 (2005) · Zbl 1076.53106
[35] Foata, D., A noncommutative version of the matrix inversion formula, Adv. Math., 31, 330-349 (1979) · Zbl 0418.15004
[36] Foata, D.; Han, G.-H., A basis for the right quantum algebra and the “\(1 = q\)” principle, J. Algebraic Combin., 27, 163-172 (2008) · Zbl 1145.05004
[37] Foata, D.; Zeilberger, D., Combinatorial proofs of Capelli’s and Turnbull’s identities from classical invariant theory, Electron. J. Combin., 1, R1 (1994) · Zbl 0810.05008
[38] Freidel, L.; Maillet, J. M., Quadratic algebras and integrable systems, Phys. Lett. B, 262, 278-284 (1991) · Zbl 1514.17016
[39] Garoufalidis, S.; Le, T. T.Q.; Zeilberger, D., The quantum MacMahon Master theorem, Proc. Natl. Acad. Sci. USA, 103, 13928-13931 (2006), (electronic) · Zbl 1170.05012
[40] Gaudin, M., Diagonalisation d’une classe d’hamiltoniens de spin, J. Phys., 37, 1087-1098 (1976)
[41] Gelfand, I. M.; Retakh, V. S., Determinants of matrices over non commutative rings, Funct. Anal. Appl., 25, 91-102 (1991) · Zbl 0748.15005
[42] Gelfand, I. M.; Retakh, V. S., Theory of noncommutative determinants, and characteristic functions of graphs, Funct. Anal. Appl., 26, 231-246 (1992)
[43] Gelfand, I. M.; Retakh, V. S., Quasideterminants, I, Selecta Math., 3, 517-546 (1997) · Zbl 0919.16011
[44] Gelfand, I. M.; Krob, D.; Lascoux, A.; Leclerc, B.; Retakh, V. S.; Thibon, J.-Y., Noncommutative symmetric functions, Adv. Math., 112, 218-348 (1995) · Zbl 0831.05063
[45] Gelfand, I.; Gelfand, S.; Retakh, V.; Wilson, R., Quasideterminants, Adv. Math., 193, 56-141 (2005) · Zbl 1079.15007
[46] Ginzburg, V., Calabi-Yau algebras
[47] Goodearl, K. R., Commutation relations for arbitrary quantum minors, Pacific J. Math., 228, 63-102 (2006) · Zbl 1125.16034
[48] Gould, M. D., Characteristic identities for semi-simple Lie algebras, J. Aust. Math. Soc. B, 26, 257-283 (1985) · Zbl 0563.17009
[49] Gould, M., Identities and characters for finite groups, J. Phys. A, 20, 2657-2665 (1987) · Zbl 0632.20008
[50] Gould, M. D.; Zhang, R. B.; Bracken, A. J., Generalized Gelfand invariants of quantum groups, J. Phys. A, 24, 937-943 (1991) · Zbl 0727.17008
[51] Gould, M. D.; Zhang, R. B.; Bracken, A. J., Generalized Gelfand invariants and characteristic identities for quantum groups, J. Math. Phys., 32, 2298-2303 (1991) · Zbl 0747.17020
[52] Green, H. S., Characteristic identities for generators of \(GL(n); O(n)\) and \(S P(n)\), J. Math. Phys., 12, 2106-2113 (1971) · Zbl 0229.17008
[53] Gurevich, D.; Pyatov, P.; Saponov, P., The Cayley-Hamilton theorem for quantum matrix algebras of \(GL(m | n)\) type, St. Petersburg Math. J., 17, 119-135 (2006) · Zbl 1132.16033
[54] Hai, P. H.; Lorenz, M., Koszul algebras and the quantum MacMahon Master theorem, Bull. Lond. Math. Soc., 39, 667-676 (2007) · Zbl 1122.05008
[55] Hopkins, M. J.; Molev, A. I., A q-analogue of the centralizer construction and skew representations of the quantum affine algebra, SIGMA Symmetry Integrability Geom. Methods Appl., 2 (2006), Paper 092, 29 pp. (electronic) · Zbl 1138.81028
[56] Howe, R.; Umeda, T., The Capelli identity, the double commutant theorem, and multiplicity-free actions, Math. Ann., 290, 565-619 (1991) · Zbl 0733.20019
[57] Isaev, A.; Ogievetsky, O.; Pyatov, P., On quantum matrix algebras satisfying the Cayley-Hamilton-Newton identities, J. Phys. A, 32, L115-L121 (1999) · Zbl 0929.17016
[58] Itoh, M., Explicit Newton’s formulas for gln, J. Algebra, 208, 687-697 (1998) · Zbl 0911.17004
[59] Itoh, M., Capelli elements for the orthogonal Lie algebras, J. Lie Theory, 10, 463-489 (2000) · Zbl 0981.17005
[60] Jarvis, P. D.; McAnally, D. S., Generalized characteristic identities and applications, (Confronting the Infinite. Confronting the Infinite, Adelaide, 1994 (1995), World Sci. Publ.: World Sci. Publ. River Edge, NJ), 215-224 · Zbl 1049.17500
[61] Trishin, I., On representations of the Cayley-Hamilton equation in the supercase, Comm. Algebra, 27, 261-287 (1999) · Zbl 0945.16037
[62] Kato, T., Perturbation Theory for Linear Operators, Grundlehren Math. Wiss., vol. 132 (1966), Springer-Verlag · Zbl 0148.12601
[63] Kazakov, V.; Sorin, A.; Zabrodin, A., Supersymmetric Bethe Ansatz and Baxter equations from discrete Hirota dynamics, Nuclear Phys. B, 790, 345-413 (2008) · Zbl 1150.82009
[64] Kelly, A. C.; Lenagan, T. H.; Rigal, L., Ring theoretic properties of quantum grassmannians, J. Algebra Appl., 3, 9-30 (2004) · Zbl 1081.16048
[65] Kirillov, A. A., Introduction to family algebras, Mosc. Math. J., 1, 49-63 (2001) · Zbl 0981.15013
[66] Konvalinka, M., A generalization of Foata’s fundamental transformation and its applications to the right-quantum algebra
[67] Konvalinka, M., Non-commutative Sylvester’s determinantal identity, Electron. J. Combin., 14 (2007), Research Paper 42, 29 pp. (electronic) · Zbl 1121.05012
[68] Konvalinka, M.; Pak, I., Non-commutative extensions of the MacMahon Master Theorem, Adv. Math., 193, 56-141 (2005)
[69] Krob, D.; Leclerc, B., Minor identities for quasi-determinants and quantum determinants, Comm. Math. Phys., 169, 1-23 (1995) · Zbl 0829.15024
[70] Lauve, A., Quantum- and quasi-Plücker coordinates, J. Algebra, 296, 440-461 (2006) · Zbl 1119.17008
[71] Lauve, A.; Taft, E. J., A class of left quantum groups modeled after SLq(r), J. Pure Appl. Algebra, 208, 797-803 (2007) · Zbl 1125.16028
[72] Leclerc, B.; Zelevinsky, A., Quasicommuting families of quantum Plücker coordinates, (Kirillov’s Seminar on Representation Theory. Kirillov’s Seminar on Representation Theory, Amer. Math. Soc. Transl. Ser. 2, vol. 181 (1998), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 85-108 · Zbl 0894.14021
[73] Macfarlane, A. J.; Pfeiffer (Cambridge), H., On characteristic equations, trace identities and Casimir operators of simple Lie algebras, J. Math. Phys.. J. Math. Phys., J. Math. Phys., 42, 977-3225 (2001), Erratum: · Zbl 1008.17500
[74] Maillet, J.-M., Lax equations and quantum groups, Phys. Lett. B, 245, 480-486 (1990)
[75] Manin, Yu., Some remarks on Koszul algebras and quantum groups, Ann. Inst. Fourier, 37, 191-205 (1987) · Zbl 0625.58040
[76] Manin, Yu., Quantum Groups and Non Commutative Geometry (1988), Universite de Montreal, Centre de Recherches Mathematiques: Universite de Montreal, Centre de Recherches Mathematiques Montreal, QC, 91 pp · Zbl 0724.17006
[77] Manin, Yu., Topics in Non Commutative Geometry, M.B. Porter Lectures (1991), Princeton University Press, 164 pp
[78] Manin, Yu., Notes on quantum groups and quantum de Rham complexes, Theoret. and Math. Phys., 92, 997-1023 (1992) · Zbl 0810.17003
[79] Molev, A. I., Yangians and their applications, (Handbook of Algebra, vol. 3 (2003), North-Holland: North-Holland Amsterdam), 907-959 · Zbl 1086.17008
[80] Molev, A. I., Skew representations of twisted Yangians, Selecta Math. (N.S.), 12, 1-38 (2006) · Zbl 1143.17005
[81] Molev, A., Yangians and Classical Lie Algebras, Math. Surveys Monogr., vol. 143 (2007), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 1141.17001
[82] Molev, A. I.; Ragoucy, E., Symmetries and invariants of twisted quantum algebras and associated Poisson algebras, Rev. Math. Phys., 20, 173-198 (2008) · Zbl 1190.17009
[83] Molev, A.; Nazarov, M.; Olshanski, G., Yangians and classical Lie algebras, Russian Math. Surveys, 51, 205-282 (1996) · Zbl 0876.17014
[84] Molinari, L. G., Determinants of block tridiagonal matrices, Linear Algebra Appl., 429, 2221-2226 (2008) · Zbl 1154.15009
[85] Muhlbach, G.; Gasca, M., A Generalization of Sylvester’s identity on determinants and some applications, Linear Algebra Appl., 66, 221-234 (1985) · Zbl 0576.15005
[86] T. Muir, The Theory of Determinants in the Historical Order of Development; T. Muir, The Theory of Determinants in the Historical Order of Development · JFM 45.1242.04
[87] Mukhin, E.; Tarasov, V.; Varchenko, A., A generalization of the Capelli identity · Zbl 1287.17026
[88] Nazarov, M., Quantum Berezinian and the classical capelli identity, Lett. Math. Phys., 21, 123-131 (1991) · Zbl 0722.17004
[89] Nazarov, M.; Tarasov, V., Yangians and Gelfand-Zetlin bases, Publ. Res. Inst. Math. Sci., 30, 459-478 (1994) · Zbl 0929.17009
[90] O’Brien, D.; Cant, A.; Carey, A., On characteristic identities for Lie algebras, Ann. Inst. H. Poincare (A) Phys. Theor., 26, 405-429 (1977) · Zbl 0359.17003
[91] Ogievetsky, O.; Vahlas, A., The relation between two types of characteristic equations for quantum matrices, Lett. Math. Phys., 65, 49-57 (2003) · Zbl 1108.17004
[92] Okounkov, A., Quantum immanants and higher Capelli identities, Transform. Groups, 1, 99-126 (1996) · Zbl 0864.17014
[93] Okounkov, A., Young basis, Wick formula and higher Capelli identities, Int. Math. Res. Not., 17, 817-839 (1996) · Zbl 0878.17008
[94] Okounkov, A.; Olshansky, G., Shifted Schur functions, St. Petersburg Math. J., 9, 239-300 (1998)
[95] Perelomov, A. M.; Popov, V. S., Casimir operators for \(U(n)\) and \(S U(n)\), Sov. J. Nucl. Phys., 3, 676-680 (1966)
[96] Procesi, C., A formal inverse to the Cayley-Hamilton theorem, J. Algebra, 107, 63-74 (1987) · Zbl 0618.16014
[97] Pyatov, P.; Saponov, P., Characteristic relations for quantum matrices, J. Phys. A, 28, 4415-4421 (1995) · Zbl 0864.17027
[98] Reshetikhin, N. Yu.; Takhtadzhyan, L. A.; Faddeev, L. D., Quantization of Lie groups and Lie algebras, Leningr. Math. J.. Leningr. Math. J., Algebra Anal., 1, 178-206 (1989), translation from: · Zbl 0677.17010
[99] Rodriguez-Romo, S.; Taft, E., Some quantum-like Hopf algebras which remain noncommutative when \(q = 1\), Lett. Math. Phys., 61, 41-50 (2002) · Zbl 1045.16020
[100] Rodriguez-Romo, S.; Taft, E., A left quantum group, J. Algebra, 286, 154-160 (2005) · Zbl 1073.16033
[101] Rozhkovskaya, N., Braided central elements
[102] V. Rubtsov, A. Silantiev, D. Talalaev, Manin matrices, elliptic commuting families and characteristic polynomial of quantum \(\mathit{gl}_n\); V. Rubtsov, A. Silantiev, D. Talalaev, Manin matrices, elliptic commuting families and characteristic polynomial of quantum \(\mathit{gl}_n\)
[103] Scott, J. S., Quasi-commuting families of quantum minors, J. Algebra, 290, 204-220 (2005) · Zbl 1079.14058
[104] Sergeev, S., Quantum matrices of the coefficients of a discrete linear problem, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI). Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), J. Math. Sci. (N. Y.), 115, 2049-2057 (2003), 370-371; translation in: · Zbl 1029.81036
[105] Sklyanin, E. K., Bäcklund transformations and Baxter’s Q-operator, (Integrable Systems: From Classical to Quantum. Integrable Systems: From Classical to Quantum, Montréal, QC, 1999. Integrable Systems: From Classical to Quantum. Integrable Systems: From Classical to Quantum, Montréal, QC, 1999, CRM Proc. Lecture Notes, vol. 26 (2000), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 227-250 · Zbl 0969.37030
[106] Skoda, Z., Included-row exchange principle for quantum minors
[107] Szigeti, J., New determinants and the Cayley-Hamilton theorem for matrices over Lie nilpotent rings, Proc. Amer. Math. Soc., 125, 2245-2254 (1997) · Zbl 0888.16011
[108] Szigeti, J., Cayley-Hamilton theorem for matrices over an arbitrary ring, Serdica Math. J., 32, 269-276 (2006) · Zbl 1164.16321
[109] Takasaki, K., Integrable systems whose spectral curve is the graph of a function, (Superintegrability in Classical and Quantum Systems. Superintegrability in Classical and Quantum Systems, CRM Proc. Lecture Notes, vol. 37 (2004), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 211-222 · Zbl 1070.37042
[110] Talalaev, D., Quantization of the Gaudin system, Funct. Anal. Appl., 40, 86-91 (2006)
[111] Turnbull, H. W., Symmetric determinants and the Cayley and Capelli operators, Proc. Edinb. Math. Soc. (2), 8, 76-86 (1948) · Zbl 0036.15002
[112] Umeda, T., Newton’s formula for gl(n), Proc. Amer. Math. Soc., 126, 3169-3176 (1998)
[113] Umeda, T., Application of Koszul complex to Wronski relations for \(U(g l_n)\), Comment. Math. Helv., 78, 4, 663-680 (2003) · Zbl 1058.17007
[114] Berenstein, D. E.; Urrutia, L. F., The equivalence between the Mandelstam and the Cayley-Hamilton identities, J. Math. Phys., 35, 1922-1930 (1994) · Zbl 0802.15005
[115] Wang, S., Quantum symmetry groups of finite spaces, Comm. Math. Phys., 195, 195-211 (1998) · Zbl 1013.17008
[116] Wilkinson, J. H., The Algebraic Eigenvalue Problem (1988), Oxford University Press Inc.: Oxford University Press Inc. New York · Zbl 0626.65029
[117] Said, K.; Salem, A.; Belgacem, R., A mathematical proof of Dodgson’s algorithm
[118] Zhang, J. J., The quantum Cayley-Hamilton theorem, J. Pure Appl. Algebra, 129, 101-109 (1998) · Zbl 1107.17301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.