×

Bare and induced Lorentz and CPT invariance violations in QED. (English) Zbl 1193.81125

Summary: We consider QED in a constant axial vector background (Æther). Further Lorentz invariance violations (LIV) might occur owing to radiative corrections. The phenomenology of this model is studied, clarifying issues related to the various regularizations employed, with a particular emphasis on the induced photon mass. To this concern, it is shown that in the presence of LIV dimensional regularization may produce a radiatively induced finite photon mass. The possible physical role of the large momentum cutoff is elucidated and the finite temperature radiative corrections are evaluated. Finally, various experimental bounds on the parameters of the model are discussed.

MSC:

81V10 Electromagnetic interaction; quantum electrodynamics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1016/j.nuclphysb.2005.03.040 · Zbl 05143127
[2] DOI: 10.1016/j.aop.2005.06.004 · Zbl 1086.85001
[3] DOI: 10.1088/1367-2630/11/8/085003
[4] DOI: 10.1103/PhysRevD.79.065011
[5] DOI: 10.1103/PhysRevD.79.065012
[6] DOI: 10.1103/PhysRevD.41.1231
[7] DOI: 10.1103/PhysRevD.55.6760
[8] DOI: 10.1103/PhysRevD.58.116002
[9] DOI: 10.1016/S0370-2693(97)00638-2
[10] DOI: 10.1103/PhysRevD.59.116008
[11] DOI: 10.1103/PhysRevLett.90.211601 · Zbl 1267.81298
[12] DOI: 10.1103/PhysRevD.66.056005
[13] DOI: 10.1080/00107510310001617106
[14] Cheng H. C., J. High Energy Phys. 0605 pp 076–
[15] DOI: 10.1142/9789814329057
[16] Mattingly D., Living Rev. Rel. 8 pp 5–
[17] DOI: 10.1103/PhysRevD.72.045018
[18] Urrutia L. F., Lect. Notes Phys. 702 pp 299– (2006) · Zbl 1151.83302
[19] DOI: 10.1103/RevModPhys.29.269 · Zbl 0079.20403
[20] DOI: 10.1016/0003-4916(63)90069-1
[21] DOI: 10.1103/PhysRevD.14.2755
[22] DOI: 10.1103/PhysRevD.51.5961
[23] DOI: 10.1016/S0370-2693(98)00823-5
[24] DOI: 10.1103/PhysRevD.59.025002
[25] Arkani-Hamed N., J. High Energy Phys. 0405 pp 074–
[26] Arkani-Hamed N., J. High Energy Phys. 0507 pp 029–
[27] DOI: 10.1086/151754
[28] DOI: 10.1140/epjc/s2004-01865-6
[29] DOI: 10.1016/j.nuclphysb.2009.06.011 · Zbl 1196.81172
[30] DOI: 10.1016/j.physletb.2005.03.037
[31] DOI: 10.1103/PhysRevD.69.105009
[32] DOI: 10.1142/S0217732305017640 · Zbl 1084.83022
[33] DOI: 10.1103/PhysRevD.39.683
[34] DOI: 10.1016/0550-3213(94)90143-0 · Zbl 0990.81645
[35] DOI: 10.1016/S0370-2693(99)00418-9
[36] DOI: 10.1142/S0217751X97000566 · Zbl 1170.83375
[37] DOI: 10.1038/31647
[38] DOI: 10.1103/PhysRevD.59.124021
[39] DOI: 10.1103/PhysRevLett.93.191301
[40] DOI: 10.1103/PhysRevLett.84.2318
[41] DOI: 10.1103/PhysRevD.65.103509
[42] DOI: 10.1103/PhysRevD.72.024027
[43] DOI: 10.1103/PhysRevLett.94.221302
[44] DOI: 10.1016/S0370-2693(03)00728-7 · Zbl 1072.81570
[45] Carmona J. M., J. High Energy Phys. 0303 pp 058–
[46] DOI: 10.1103/PhysRevD.71.067702
[47] DOI: 10.1103/PhysRevD.72.107702
[48] DOI: 10.1103/PhysRevLett.82.3572
[49] DOI: 10.1103/PhysRevLett.83.2518
[50] Pérez-Victoria M., J. High Energy Phys. 0104 pp 032–
[51] DOI: 10.1134/1.568120
[52] DOI: 10.1016/S0370-2693(01)00196-4 · Zbl 0977.81171
[53] DOI: 10.1103/PhysRevD.63.105015
[54] DOI: 10.1103/PhysRevD.64.046013
[55] DOI: 10.1016/S0550-3213(00)00625-8 · Zbl 0971.81576
[56] DOI: 10.1142/S0217751X05020902 · Zbl 1070.82500
[57] Andrianov A. A., J. High Energy Phys. 0202 pp 030–
[58] DOI: 10.1103/PhysRevD.70.101701
[59] DOI: 10.1103/PhysRevD.73.036005
[60] DOI: 10.1103/PhysRevD.70.025003
[61] DOI: 10.1103/PhysRevD.73.065016
[62] DOI: 10.1016/j.physletb.2006.06.075
[63] DOI: 10.1016/j.nuclphysb.2006.11.028 · Zbl 1116.81354
[64] DOI: 10.1007/s10773-007-9619-4 · Zbl 1148.83300
[65] DOI: 10.1103/PhysRevD.78.125023
[66] DOI: 10.1103/PhysRevLett.79.1801
[67] DOI: 10.1103/PhysRevLett.97.021603
[68] DOI: 10.1016/j.physletb.2008.07.018
[69] DOI: 10.1016/S0550-3213(01)00161-4 · Zbl 0969.81575
[70] DOI: 10.1016/j.physletb.2005.04.064 · Zbl 1247.83148
[71] DOI: 10.1103/PhysRevLett.94.191602
[72] DOI: 10.1103/PhysRevD.75.105003
[73] DOI: 10.1103/PhysRevD.80.125010
[74] Andrianov A. A., J. High Energy Phys. 0909 pp 057–
[75] DOI: 10.1103/PhysRevD.51.3923
[76] DOI: 10.1103/PhysRevD.63.065008
[77] DOI: 10.1103/PhysRevD.68.085003
[78] DOI: 10.1103/PhysRevD.73.105020
[79] DOI: 10.1016/0550-3213(72)90279-9
[80] DOI: 10.1007/BF01609069
[81] DOI: 10.1007/BF01609070
[82] DOI: 10.1016/0370-1573(74)90023-4
[83] DOI: 10.1017/CBO9780511622656 · Zbl 1094.53505
[84] DOI: 10.1103/PhysRevLett.83.4694
[85] DOI: 10.1103/PhysRevD.63.111101
[86] DOI: 10.1103/PhysRevD.78.123009
[87] DOI: 10.1103/PhysRevLett.102.170402
[88] DOI: 10.1103/PhysRevD.80.036010
[89] Pokorski S., Gauge Field Theories (1987)
[90] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley, Reading, 1995) p. 252.
[91] Gradshteyn I. S., Table of Integrals, Series, and Products (1994) · Zbl 0918.65002
[92] Itzykson C., International Series in Pure and Applied Physics, in: Quantum Field Theory (1980)
[93] Bogolyubov N. N., Intersci. Monogr. Phys. Astron. 3 pp 1– (1959)
[94] Faddeev L. D., Front. Phys. 50 pp 1– (1980)
[95] DOI: 10.1086/374350
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.