×

Suppressing numerical oscillation for nonlinear hyperbolic equations by wavelet analysis. (English) Zbl 1427.76228

Summary: In the numerical solution for nonlinear hyperbolic equations, numerical oscillation often shows and hides the real solution with the progress of computation. Using wavelet analysis, a dual wavelet shrinkage procedure is proposed, which allows one to extract the real solution hidden in the numerical solution with oscillation. The dual wavelet shrinkage procedure is introduced after applying the local differential quadrature method, which is a straightforward technique to calculate the spatial derivatives. Results free from numerical oscillation can be obtained, which can not only capture the position of shock and rarefaction waves, but also keep the sharp gradient structure within the shock wave. Three model problems – a one-dimensional dam-break flow governed by shallow water equations, and the propagation of a one-dimensional and a two-dimensional shock wave controlled by the Euler equations – are used to confirm the validity of the proposed procedure.

MSC:

76M99 Basic methods in fluid mechanics
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65T60 Numerical methods for wavelets
76L05 Shock waves and blast waves in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Godunov, S. K., A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Matematicheskii Sbornik, 47, 89, 271-306 (1959) · Zbl 0171.46204
[2] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, Journal of Computational Physics, 43, 2, 357-372 (1981) · Zbl 0474.65066 · doi:10.1016/0021-9991(81)90128-5
[3] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics (1999), New York, NY, USA: Springer, New York, NY, USA · Zbl 0923.76004
[4] Loubere, R.; Dumbser, M.; Diot, S., A new family of high order unstructured MOOD and ADER finite volume schemes for multidimensional systems of hyperbolic conservation laws, Communications in Computational Physics, 16, 3, 718-763 (2014) · Zbl 1373.76137 · doi:10.4208/cicp.181113.140314a
[5] Liu, X.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, Journal of Computational Physics, 115, 1, 200-212 (1994) · Zbl 0811.65076 · doi:10.1006/jcph.1994.1187
[6] Abgrall, R., On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation, Journal of Computational Physics, 114, 1, 45-58 (1994) · Zbl 0822.65062 · doi:10.1006/jcph.1994.1148
[7] Shyy, W.; Chen, M.-H.; Mittal, R.; Udaykumar, H. S., On the suppression of numerical oscillations using a non-linear filter, Journal of Computational Physics, 102, 1, 49-62 (1992) · Zbl 0775.76122 · doi:10.1016/S0021-9991(05)80004-X
[8] Kang, H.; Park, K.; Kim, K.; Lee, D., Multi-resolution analysis for high accuracy and efficiency of Euler computation, International Journal for Numerical Methods in Fluids, 74, 9, 661-683 (2014) · Zbl 1455.65023 · doi:10.1002/fld.3866
[9] Gerolymos, G. A.; Senechal, D.; Vallet, I., Very-high-order WENO schemes, Journal of Computational Physics, 228, 8481-8524 (2009) · Zbl 1176.65088
[10] Mallat, S., A Wavelet Tour of Signal Processing (1999), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0945.68537
[11] Mahdavi, A.; Hashemi, M. R., Modeling of solitary wave run-up using localized DQM combined with real time AM algorithm, Proceedings of the 4th International Conference on Computational Methods in Marine Engineering (MARINE ’11)
[12] Mahdavi, A.; Reza Hashemi, M.; Talebbeydokhti, N., A localized differential quadrature model for moving boundary shallow water flows, Journal of Hydraulic Research, 50, 6, 612-622 (2012) · doi:10.1080/00221686.2012.721141
[13] Zong, Z.; Zhang, Y. Y., Advanced Differential Quadrature Methods. Advanced Differential Quadrature Methods, Chapman & Hall/CRC (2009) · Zbl 1178.65125 · doi:10.1201/9781420082494
[14] Beylkin, G.; Coifman, R.; Daubechies, I., Wavelets and Their Application (1992), Cambridge, MA, USA: Jones and Bartlett, Cambridge, MA, USA
[15] Vasilyev, O. V.; Paolucci, S., A dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in a finite domain, Journal of Computational Physics, 125, 2, 498-512 (1996) · Zbl 0847.65073 · doi:10.1006/jcph.1996.0111
[16] Vasilyev, O. V.; Paolucci, S.; Sen, M., A multilevel wavelet collocation method for solving partial differential equations in a finite domain, Journal of Computational Physics, 120, 1, 33-47 (1995) · Zbl 0837.65113 · doi:10.1006/jcph.1995.1147
[17] Farge, M.; Schneider, K.; Kevlahan, N., Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis, Physics of Fluids, 11, 8, 2187-2201 (1999) · Zbl 1147.76386 · doi:10.1063/1.870080
[18] Farge, M.; Schneider, K., Coherent vortex simulation (CVS), a semi-deterministic turbulence model using wavelets, Flow, Turbulence and Combustion, 66, 4, 393-426 (2001) · Zbl 1094.76525 · doi:10.1023/A:1013512726409
[19] Goldstein, D. E.; Vasilyev, O. V., Stochastic coherent adaptive large eddy simulation method, Physics of Fluids, 16, 7, 2497-2513 (2004) · Zbl 1186.76198 · doi:10.1063/1.1736671
[20] Schneider, K.; Kevlahan, N. K.-R.; Farge, M., Comparison of an adaptive wavelet method and nonlinearly filtered pseudospectral methods for two-dimensional turbulence, Theoretical and Computational Fluid Dynamics, 9, 3-4, 191-206 (1997) · Zbl 0911.76068 · doi:10.1007/s001620050040
[21] Daubechies, I., Orthonormal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, 41, 7, 909-996 (1988) · Zbl 0644.42026 · doi:10.1002/cpa.3160410705
[22] Donoho, D. L.; Johnstone, I. M., Adapting to unknown smoothness via wavelet shrinkage, Journal of the American Statistical Association, 90, 432, 1200-1224 (1995) · Zbl 0869.62024 · doi:10.1080/01621459.1995.10476626
[23] Stoker, J. J., Water Waves: The Mathematical Theory with Applications (1986), New York, NY, USA: Interscience Publishers, New York, NY, USA · Zbl 0812.76002
[24] Delis, A. I.; Katsaounis, T., Relaxation schemes for the shallow water equations, International Journal for Numerical Methods in Fluids, 41, 7, 695-719 (2003) · Zbl 1023.76031 · doi:10.1002/fld.462
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.