×

Fluctuations in fitness distributions and the effects of weak linked selection on sequence evolution. (English) Zbl 1296.92154

Summary: Evolutionary dynamics and patterns of molecular evolution are strongly influenced by selection on linked regions of the genome, but our quantitative understanding of these effects remains incomplete. Recent work has focused on predicting the distribution of fitness within an evolving population, and this forms the basis for several methods that leverage the fitness distribution to predict the patterns of genetic diversity when selection is strong. However, in weakly selected populations random fluctuations due to genetic drift are more severe, and neither the distribution of fitness nor the sequence diversity within the population are well understood. Here, we briefly review the motivations behind the fitness-distribution picture, and summarize the general approaches that have been used to analyze this distribution in the strong-selection regime. We then extend these approaches to the case of weak selection, by outlining a perturbative treatment of selection at a large number of linked sites. This allows us to quantify the stochastic behavior of the fitness distribution and yields exact analytical predictions for the sequence diversity and substitution rate in the limit that selection is weak.

MSC:

92D10 Genetics and epigenetics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Barton, N.; Etheridge, A. M., The effect of selection on genealogies, Genetics, 166, 1115-1131 (2004)
[2] Barton, N. H.; Turelli, M., Natural and sexual selection at many loci, Genetics, 127, 229-255 (1991)
[3] Begun, D. J.; Holloway, A. K.; Stevens, K.; Hillier, L. W.; Poh, Y.-P., Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans, PLoS Biol., 5, e310 (2007)
[4] Brunet, E.; Derrida, B.; Mueller, A. H.; Munier, S., A phenomenological theory giving the full statistics of the position of fluctuating pulled fronts, Phys. Rev. E, 73, 056126 (2006)
[5] Brunet, E.; Rouzine, I. M.; Wilke, C. O., The stochastic edge in adaptive evolution, Genetics, 179, 603-620 (2008)
[6] Bürger, R., Moments, cumulants, and polygenic dynamics, J. Math. Biol., 30, 199-213 (1991) · Zbl 0760.92014
[7] Bustamante, C. D.; Wakeley, J.; Sawyer, S.; Hartl, D. L., Directional selection and the site-frequency spectrum, Genetics, 159, 1779-1788 (2001)
[8] Charlesworth, B.; Morgan, M. T.; Charlesworth, D., The effect of deleterious mutations on neutral molecular variation, Genetics, 134, 1289-1303 (1993)
[9] Comeron, J. M.; Kreitman, M., Population, evolutionary, and genomic consequences of interference selection, Genetics, 161, 389-410 (2002)
[10] Desai, M. M.; Fisher, D. S., Beneficial mutation selection balance and the effect of genetic linkage on positive selection, Genetics, 176, 1759-1798 (2007)
[11] Desai, M. M.; Fisher, D. S., The balance between mutators and nonmutators in asexual populations, Genetics, 188, 997-1014 (2011)
[12] Etheridge, A.; Pfaffelhuber, P.; Wakolbinger, A., How often does the ratchet click? facts, heuristics, and asymptotics, (Blath, P. M.J.; Scheutzow, M., Trends in Stochastic Analysis (2007), Cambridge University Press), 365-390 · Zbl 1171.92030
[13] Ethier, S. N.; Kurtz, T. G., The infinitely-many-alleles model with selection as a measure valued diffusion, (Lecture Notes in Biomathematics, vol. 70 (1987)), 72-87 · Zbl 0644.92011
[14] Ewens, W. J., Mathematical Population Genetics (2004), Springer-Verlag: Springer-Verlag New York · Zbl 1060.92046
[15] Falconer, D. S., Introduction to Quantitative Genetics (1960), Oliver & Boyd: Oliver & Boyd Edinburgh/London
[16] Feller, W., Diffusion processes in genetics, (Proc. Second Berkeley Symp. on Math. Statist. and Prob (1951), Univ. of Calif. Press), 227-256
[17] Fisher, D. S., Asexual evolution waves: fluctuations and universality, J. Stat. Mech., P01011 (2013) · Zbl 1456.92114
[18] Franklin, I.; Lewontin, R. C., Is the gene the unit of selection?, Genetics, 65, 707-734 (1970)
[19] Gardiner, C., Handbook of Stochastic Methods (1985), Springer: Springer New York
[20] Gessler, D., The constraints of finite size in asexual populations and the rate of the ratchet, Genet. Res., 73, 119-131 (1995)
[22] Good, B. H.; Rouzine, I. M.; Balick, D. J.; Hallatschek, O.; Desai, M. M., Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations, Proc. Natl. Acad. Sci., 109, 4950-4955 (2012)
[23] Gordo, I.; Charlesworth, B., On the speed of Muller’s ratchet, Genetics, 156, 2137-2140 (2000)
[24] Gordo, I.; Navarro, A.; Charlesworth, B., Muller’s ratchet and the pattern of variation at a neutral locus, Genetics, 161, 835-848 (2002)
[25] Goyal, S.; Balick, D. J.; Jerison, E. R.; Neher, R. A.; Shraiman, B. I.; Desai, M. M., Dynamic mutation-selection balance as an evolutionary attractor, Genetics, 191, 1309-1319 (2012)
[26] Hahn, M. W., Toward a selection theory of molecular evolution, Evolution, 62, 255-265 (2008)
[27] Haigh, J., The accumulation of deleterious genes in a population, Theor. Popul. Biol., 14, 251-267 (1978) · Zbl 0415.92012
[28] Hallatschek, O., The noisy edge of traveling waves, Proc. Natl. Acad. Sci. USA, 108, 1783-1787 (2011)
[29] Hallatschek, O.; Korolev, K. S., Fisher waves in the strong noise limit, Phys. Rev. Lett., 103, 108103 (2009)
[30] Higgs, P.; Woodcock, G., The accumulation of mutations in asexual populations and the structure of genealogical trees in the presence of selection, J. Math. Biol., 33, 677-702 (1995) · Zbl 0830.92016
[31] Hill, W. G.; Robertson, A., The effect of linkage on limits to artificial selection, Genet. Res., 8, 269-294 (1966)
[32] Hinch, E. J., Perturbation Methods (1991), Cambridge University Press: Cambridge University Press New York · Zbl 0746.34001
[33] Hudson, R. R.; Kaplan, N. L., Gene trees with background selection, (Golding, B., Non-Neutral Evolution: Theories and Molecular Data (1994), Chapman & Hall: Chapman & Hall London), 140-153
[34] Jain, K., Loss of least-loaded class in asexual populations due to drift and epistasis, Genetics, 179, 2125-2134 (2008)
[35] Kimura, M., Stochastic processes and distribution of gene frequencies under natural selection, Cold Spring Harb. Symp. Quant. Biol., 20, 33-53 (1955)
[36] Kingman, J. F.C., Coherent random walks arising in some genetical models, Proc. R. Soc. Lond. Ser. A, 351, 19-31 (1976) · Zbl 0361.60024
[37] Kingman, J. F.C., The coalescent, Stochastic Processes Appl., 13, 235-248 (1982) · Zbl 0491.60076
[38] Kingman, J. F.C., Origins of the coalescent: 1974-1982, Genetics, 156, 1461-1463 (2000)
[39] Kreitman, M., Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster, Nature, 304, 412-417 (1983)
[40] Lewontin, R. C.; Hubby, J. L., A molecular approach to the study of genic heterozygosity in natural populations. ii. amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura, Genetics, 54, 595-609 (1966)
[42] Moran, P. A.P., Wandering distributions and the electrophoretic profile, Theor. Popul. Biol., 8, 318-330 (1975) · Zbl 0333.92006
[43] Muller, H. J., The relation of recombination to mutational advance, Mutat. Res., 1, 2-9 (1964)
[44] Nagylaki, T., The evolution of multilocus systems under weak selection, Genetics, 134, 627-647 (1993)
[45] Neher, R.; Shraiman, B. I., Genetic draft and quasi-neutrality in large facultatively sexual populations, Genetics, 188, 975-976 (2011)
[46] Neher, R. A.; Shraiman, B. I., Statistical genetics and evolution of quantitative traits, Rev. Modern Phys., 83, 1283-1300 (2011)
[47] Neher, R.; Shraiman, B. I., Fluctuations of fitness distributions and the rate of Muller’s ratchet, Genetics, 191, 1283-1293 (2012)
[48] Neher, R.; Shraiman, B. I.; Fisher, D. S., Rate of adaptation in large sexual populations, Genetics, 184, 467-481 (2010)
[49] Nelson, M. R.; Wegmann, D.; Ehm, M. G.; Kessner, D., An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people, Science, 337, 100-104 (2012)
[50] Neuhauser, C.; Krone, S. M., The genealogy of samples in models with selection, Genetics, 145, 519-534 (1997)
[51] Nicolaisen, L. E.; Desai, M. M., Distortions in genealogies due to purifying selection, Mol. Biol. Evol., 29, 3589-3600 (2012)
[52] Nik-Zinal, S.; Loo, P. V.; Wedge, D. C.; Alexandrov, L. B., The life history of 21 breats cancers, Cell, 149, 994-1007 (2012)
[53] O’Fallon, B. D.; Seger, J.; Adler, F. R., A continuous-state coalescent and the impact of weak selection on the structure of genealogies, Mol. Biol. Evol., 27, 1162-1172 (2010)
[54] Ohta, T., The nearly neutral theory of molecular evolution, Annu. Rev. Ecol. Syst., 23, 263-286 (1992)
[55] Ohta, T.; Kimura, M., A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population, Genet. Res., 22, 201-204 (1973)
[56] Park, S.; Krug, J., Clonal interference in large populations, Proc. Natl. Acad. Sci. USA, 104, 18135-18140 (2007)
[57] Pool, J. E.; Hellmann, I.; Jensen, J. D.; Nielson, R., Population genetic inference from geomic sequence variation, Genome Res., 20, 291-300 (2010)
[58] Rambaut, A.; Pybus, O. G.; Nelson, M. I.; Viboud, C., The genomic and epidemiological dynamics of human influenza a virus, Nature, 453, 617-620 (2008)
[59] Rouzine, I.; Brunet, E.; Wilke, C., The traveling-wave approach to asexual evolution: Muller’s ratchet and the speed of adaptation, Theor. Popul. Biol., 73, 24-46 (2008) · Zbl 1202.92066
[60] Rouzine, I. M.; Wakeley, J.; Coffin, J. M., The solitary wave of asexual evolution, Proc. Natl. Acad. Sci. USA, 100, 587-592 (2003)
[61] Santiago, E.; Caballero, A., Effective size and polymorphism of linked neutral loci in populations under directional selection, Genetics, 149, 2105-2117 (1998)
[62] Sawyer, S. A.; Hartl, D. L., Population genetics of polymorphism and divergence, Genetics, 132, 1161-1176 (1992)
[63] Slatkin, M., On treating the chromosome as the unit of selection, Genetics, 72, 157-168 (1972)
[64] Song, Y. S.; Steinrücken, M. A., A simple method for finding explicit analytic transition densities of diffusion processes with general diploid selection, Genetics, 190, 1117-1129 (2012)
[65] Stephan, W.; Chao, L.; Smale, J. G., The advance of Muller’s ratchet in a haploid asexual population: approximate solutions based on diffusion theory, Genet. Res., 61, 225-231 (1993)
[66] Tsimring, L.; Levine, H.; Kessler, D., RNA virus evolution via a fitness-space model, Phys. Rev. Lett., 90, 088103 (1996)
[67] Turelli, M.; Barton, N. H., Dynamics of polygeneic characters under selection, Theor. Popul. Biol., 38, 1-57 (1990) · Zbl 0736.92014
[68] Van Dyke, M., Analysis and improvement of perturbation series, Quart. J. Mech. Appl. Math., 27, 423-450 (1974) · Zbl 0295.65066
[69] Walczak, A. M.; Nicolaisen, L. E.; Plotkin, J. B.; Desai, M. M., The structure of genealogies in the presence of purifying selection: a fitness-class coalescent, Genetics, 190, 753-779 (2012)
[70] Waxman, D.; Loewe, L., A stochastic model for a single click of Muller’s ratchet, J. Theoret. Biol., 264, 1120-1132 (2010) · Zbl 1406.92443
[71] Woodcock, G.; Higgs, P. G., Population evolution on a multiplicative single-peak fitness landscape, J. Theoret. Biol., 179, 61-73 (1996)
[72] Zeng, K.; Charlesworth, B., The joint effects of background selection and genetic recombination on local gene genealogies, Genetics, 189, 251-266 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.