×

Ultraspinning limits and super-entropic black holes. (English) Zbl 1388.83461

Summary: By employing the new ultraspinning limit we construct novel classes of black holes with non-compact event horizons and finite horizon area and study their thermo-dynamics. Our ultraspinning limit can be understood as a simple generating technique that consists of three steps: i) transforming the known rotating AdS black hole solution to a special coordinate system that rotates (in a given 2-plane) at infinity ii) boosting this rotation to the speed of light iii) compactifying the corresponding azimuthal direction. In so doing we qualitatively change the structure of the spacetime since it is no longer pos-sible to return to a frame that does not rotate at infinity. The obtained black holes have non-compact horizons with topology of a sphere with two punctures. The entropy of some of these exceeds the maximal bound implied by the reverse isoperimetric inequality, such black holes are super-entropic.

MSC:

83C57 Black holes
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] S.W. Hawking, Black holes in general relativity, Commun. Math. Phys.25 (1972) 152 [INSPIRE]. · doi:10.1007/BF01877517
[2] R. Emparan and H.S. Reall, A rotating black ring solution in five-dimensions, Phys. Rev. Lett.88 (2002) 101101 [hep-th/0110260] [INSPIRE]. · doi:10.1103/PhysRevLett.88.101101
[3] G.J. Galloway and R. Schoen, A generalization of Hawking’s black hole topology theorem to higher dimensions, Commun. Math. Phys.266 (2006) 571 [gr-qc/0509107] [INSPIRE]. · Zbl 1190.53070 · doi:10.1007/s00220-006-0019-z
[4] L. Vanzo, Black holes with unusual topology, Phys. Rev.D 56 (1997) 6475 [gr-qc/9705004] [INSPIRE].
[5] R.B. Mann, Pair production of topological anti-de Sitter black holes, Class. Quant. Grav.14 (1997) L109 [gr-qc/9607071] [INSPIRE]. · Zbl 0873.53073 · doi:10.1088/0264-9381/14/5/007
[6] J.P.S. Lemos, Cylindrical black hole in general relativity, Phys. Lett.B 353 (1995) 46 [gr-qc/9404041] [INSPIRE]. · doi:10.1016/0370-2693(95)00533-Q
[7] R.-G. Cai and Y.-Z. Zhang, Black plane solutions in four-dimensional space-times, Phys. Rev.D 54 (1996) 4891 [gr-qc/9609065] [INSPIRE].
[8] R.B. Mann, Topological black holes: outside looking in, Annals Israel Phys. Soc.13 (1997) 311 [gr-qc/9709039] [INSPIRE]. · Zbl 0907.53064
[9] P. Figueras and S. Tunyasuvunakool, Black rings in global anti-de Sitter space, JHEP03 (2015) 149 [arXiv:1412.5680] [INSPIRE]. · Zbl 1388.83439 · doi:10.1007/JHEP03(2015)149
[10] M.M. Caldarelli, R. Emparan and M.J. Rodriguez, Black rings in (anti)-de Sitter space, JHEP11 (2008) 011 [arXiv:0806.1954] [INSPIRE]. · doi:10.1088/1126-6708/2008/11/011
[11] D. Birmingham, Topological black holes in anti-de Sitter space, Class. Quant. Grav.16 (1999) 1197 [hep-th/9808032] [INSPIRE]. · Zbl 0933.83025 · doi:10.1088/0264-9381/16/4/009
[12] A. Gnecchi, K. Hristov, D. Klemm, C. Toldo and O. Vaughan, Rotating black holes in 4d gauged supergravity, JHEP01 (2014) 127 [arXiv:1311.1795] [INSPIRE]. · Zbl 1333.83080 · doi:10.1007/JHEP01(2014)127
[13] D. Klemm, Four-dimensional black holes with unusual horizons, Phys. Rev.D 89 (2014) 084007 [arXiv:1401.3107] [INSPIRE].
[14] R.A. Hennigar, D. Kubiznak and R.B. Mann, Super-entropic black holes, arXiv:1411.4309 [INSPIRE]. · Zbl 1388.83461
[15] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett.B 379 (1996) 99 [hep-th/9601029] [INSPIRE]. · Zbl 1376.83026 · doi:10.1016/0370-2693(96)00345-0
[16] R. Emparan and R.C. Myers, Instability of ultra-spinning black holes, JHEP09 (2003) 025 [hep-th/0308056] [INSPIRE]. · doi:10.1088/1126-6708/2003/09/025
[17] R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Annals Phys.172 (1986) 304 [INSPIRE]. · Zbl 0601.53081 · doi:10.1016/0003-4916(86)90186-7
[18] J. Armas and N.A. Obers, Blackfolds in (anti)-de Sitter backgrounds, Phys. Rev.D 83 (2011) 084039 [arXiv:1012.5081] [INSPIRE].
[19] M.M. Caldarelli et al., Vorticity in holographic fluids, PoS(CORFU2011) 076 [arXiv:1206.4351] [INSPIRE].
[20] N. Altamirano, D. Kubiznak, R.B. Mann and Z. Sherkatghanad, Thermodynamics of rotating black holes and black rings: phase transitions and thermodynamic volume, Galaxies2 (2014) 89 [arXiv:1401.2586] [INSPIRE]. · doi:10.3390/galaxies2010089
[21] M. Cvetič, G.W. Gibbons, D. Kubiznak and C.N. Pope, Black hole enthalpy and an entropy inequality for the thermodynamic volume, Phys. Rev.D 84 (2011) 024037 [arXiv:1012.2888] [INSPIRE].
[22] B. Carter, Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s equations, Commun. Math. Phys.10 (1968) 280 [INSPIRE]. · Zbl 0162.59302
[23] D. Klemm, Rotating black branes wrapped on Einstein spaces, JHEP11 (1998) 019 [hep-th/9811126] [INSPIRE]. · Zbl 0951.83043 · doi:10.1088/1126-6708/1998/11/019
[24] S.W. Hawking, C.J. Hunter and M. Taylor, Rotation and the AdS/CFT correspondence, Phys. Rev.D 59 (1999) 064005 [hep-th/9811056] [INSPIRE].
[25] B. Carter, Global structure of the Kerr family of gravitational fields, Phys. Rev.174 (1968) 1559 [INSPIRE]. · Zbl 0167.56301 · doi:10.1103/PhysRev.174.1559
[26] E. Hackmann, C. Lammerzahl, V. Kagramanova and J. Kunz, Analytical solution of the geodesic equation in Kerr-(anti-) de Sitter space-times, Phys. Rev.D 81 (2010) 044020 [arXiv:1009.6117] [INSPIRE].
[27] D. Kastor, S. Ray and J. Traschen, Enthalpy and the mechanics of AdS black holes, Class. Quant. Grav.26 (2009) 195011 [arXiv:0904.2765] [INSPIRE]. · Zbl 1178.83030 · doi:10.1088/0264-9381/26/19/195011
[28] V.P. Frolov and D. Kubiznak, Higher-dimensional black holes: hidden symmetries and separation of variables, Class. Quant. Grav.25 (2008) 154005 [arXiv:0802.0322] [INSPIRE]. · Zbl 1147.83022 · doi:10.1088/0264-9381/25/15/154005
[29] Z.-W. Chong, M. Cvetič, H. Lü and C.N. Pope, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett.95 (2005) 161301 [hep-th/0506029] [INSPIRE]. · doi:10.1103/PhysRevLett.95.161301
[30] A. Ashtekar and A. Magnon, Asymptotically anti-de Sitter space-times, Class. Quant. Grav.1 (1984) L39 [INSPIRE]. · doi:10.1088/0264-9381/1/4/002
[31] A. Ashtekar and S. Das, Asymptotically anti-de Sitter space-times: conserved quantities, Class. Quant. Grav.17 (2000) L17 [hep-th/9911230] [INSPIRE]. · Zbl 0943.83023 · doi:10.1088/0264-9381/17/2/101
[32] S. Das and R.B. Mann, Conserved quantities in Kerr-anti-de Sitter space-times in various dimensions, JHEP08 (2000) 033 [hep-th/0008028] [INSPIRE]. · Zbl 0990.83514 · doi:10.1088/1126-6708/2000/08/033
[33] G.W. Gibbons, H. Lü, D.N. Page and C.N. Pope, Rotating black holes in higher dimensions with a cosmological constant, Phys. Rev. Lett.93 (2004) 171102 [hep-th/0409155] [INSPIRE]. · doi:10.1103/PhysRevLett.93.171102
[34] G.W. Gibbons, H. Lü, D.N. Page and C.N. Pope, The general Kerr-de Sitter metrics in all dimensions, J. Geom. Phys.53 (2005) 49 [hep-th/0404008] [INSPIRE]. · Zbl 1069.83003 · doi:10.1016/j.geomphys.2004.05.001
[35] R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Annals Phys.172 (1986) 304 [INSPIRE]. · Zbl 0601.53081 · doi:10.1016/0003-4916(86)90186-7
[36] W. Chen, H. Lü and C.N. Pope, General Kerr-NUT-AdS metrics in all dimensions, Class. Quant. Grav.23 (2006) 5323 [hep-th/0604125] [INSPIRE]. · Zbl 1100.83006 · doi:10.1088/0264-9381/23/17/013
[37] G.W. Gibbons, M.J. Perry and C.N. Pope, The first law of thermodynamics for Kerr-anti-de Sitter black holes, Class. Quant. Grav.22 (2005) 1503 [hep-th/0408217] [INSPIRE]. · Zbl 1068.83010 · doi:10.1088/0264-9381/22/9/002
[38] D. Kubizňák and V.P. Frolov, Hidden symmetry of higher dimensional Kerr-NUT-AdS spacetimes, Class. Quant. Grav.24 (2007) F1 [gr-qc/0610144] [INSPIRE]. · Zbl 1206.83043 · doi:10.1088/0264-9381/24/3/F01
[39] D. Kubizňák, Hidden symmetries of higher-dimensional rotating black holes, arXiv:0809.2452 [INSPIRE]. · Zbl 1228.83066
[40] R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, New horizons for black holes and branes, JHEP04 (2010) 046 [arXiv:0912.2352] [INSPIRE]. · Zbl 1272.83049 · doi:10.1007/JHEP04(2010)046
[41] J. Armas and M. Blau, New geometries for black hole horizons, arXiv:1504.01393 [INSPIRE]. · Zbl 1388.83371
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.