×

Interpretation of MUSIC for location detecting of small inhomogeneities surrounded by random scatterers. (English) Zbl 1400.78013

Summary: We consider the MUltiple SIgnal Classification (MUSIC) algorithm for identifying the locations of small electromagnetic inhomogeneities surrounded by random scatterers. For this purpose, we rigorously analyze the structure of MUSIC-type imaging function by establishing a relationship with zero-order Bessel function of the first kind. This relationship shows certain properties of the MUSIC algorithm, explains some unexplained phenomena, and provides a method for improvements.

MSC:

78A45 Diffraction, scattering
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Arridge, S. R., Optical tomography in medical imaging, Inverse Problems, 15, 2, R41-R93, (1999) · Zbl 0926.35155 · doi:10.1088/0266-5611/15/2/022
[2] Ammari, H.; Bao, G.; Fleming, J. L., An inverse source problem for Maxwell’s equations in magnetoencephalography, SIAM Journal on Applied Mathematics, 62, 4, 1369-1382, (2002) · Zbl 1003.35123 · doi:10.1137/s0036139900373927
[3] Fokas, A. S.; Kurylev, Y.; Marinakis, V., The unique determination of neuronal currents in the brain via magnetoencephalography, Inverse Problems, 20, 4, 1067-1082, (2004) · Zbl 1075.92012 · doi:10.1088/0266-5611/20/4/005
[4] Kim, Y. T.; Doh, I.; Ahn, B.; Kim, K.-Y., Construction of static 3D ultrasonography image by radiation beam tracking method from 1D array probe, Journal of the Korean Society for Nondestructive Testing, 35, 2, 128-133, (2015) · doi:10.7779/jksnt.2015.35.2.128
[5] Son, S.-H.; Kim, H.-J.; Lee, K.-J.; Kim, J.-Y.; Lee, J.-M.; Jeon, S.-I.; Choi, H.-D., Experimental measurement system for 3–6 GHz microwave breast tomography, Journal of Electromagnetic Engineering and Science, 15, 4, 250-257, (2015)
[6] Ammari, H.; Iakovleva, E.; Lesselier, D., Two numerical methods for recovering small inclusions from the scattering amplitude at a fixed frequency, SIAM Journal on Scientific Computing, 27, 1, 130-158, (2005) · Zbl 1089.78016 · doi:10.1137/040612518
[7] Ammari, H.; Iakovleva, E.; Lesselier, D.; Perrusson, G., MUSIC-type electromagnetic imaging of a collection of small three-dimensional inclusions, SIAM Journal on Scientific Computing, 29, 2, 674-709, (2007) · Zbl 1132.78308 · doi:10.1137/050640655
[8] Iakovleva, E.; Gdoura, S.; Lesselier, D.; Perrusson, G., Multistatic response matrix of a 3-D inclusion in half space and MUSIC imaging, IEEE Transactions on Antennas and Propagation, 55, 9, 2598-2609, (2007) · doi:10.1109/tap.2007.904103
[9] Zhong, Y.; Chen, X., MUSIC imaging and electromagnetic inverse scattering of multiple-scattering small anisotropic spheres, IEEE Transactions on Antennas and Propagation, 55, 12, 3542-3549, (2007) · Zbl 1369.78347 · doi:10.1109/tap.2007.910488
[10] Ammari, H.; Iakovleva, E.; Lesselier, D., A MUSIC algorithm for locating small inclusions buried in a half-space from the scattering amplitude at a fixed frequency, Multiscale Modeling & Simulation, 3, 3, 597-628, (2005) · Zbl 1075.35101 · doi:10.1137/040610854
[11] Griesmaier, R., Reciprocity gap MUSIC imaging for an inverse scattering problem in two layered media, Inverse Problems and Imaging, 3, 3, 389-403, (2009) · Zbl 1194.78017 · doi:10.3934/ipi.2009.3.389
[12] Song, R.; Chen, R.; Chen, X., Imaging three-dimensional anisotropic scatterers in multilayered medium by multiple signal classification method with enhanced resolution, Journal of the Optical Society of America A, 29, 9, 1900-1905, (2012) · doi:10.1364/josaa.29.001900
[13] Ammari, H.; Garnier, J.; Kang, H.; Park, W.-K.; Sølna, K., Imaging schemes for perfectly conducting cracks, SIAM Journal on Applied Mathematics, 71, 1, 68-91, (2011) · Zbl 1259.78049 · doi:10.1137/100800130
[14] Ammari, H.; Kang, H.; Lee, H.; Park, W.-K., Asymptotic imaging of perfectly conducting cracks, SIAM Journal on Scientific Computing, 32, 2, 894-922, (2010) · Zbl 1210.35279 · doi:10.1137/090749013
[15] Ammari, H.; Kang, H.; Kim, E.; Lim, M.; Louati, K., A direct algorithm for ultrasound imaging of internal corrosion, SIAM Journal on Numerical Analysis, 49, 3, 1177-1193, (2011) · Zbl 1238.65107 · doi:10.1137/100784710
[16] Ahn, C. Y.; Jeon, K.; Park, W.-K., Analysis of MUSIC-type imaging functional for single, thin electromagnetic inhomogeneity in limited-view inverse scattering problem, Journal of Computational Physics, 291, 198-217, (2015) · Zbl 1349.78005 · doi:10.1016/j.jcp.2015.03.018
[17] Park, W.-K., Asymptotic properties of MUSIC-type imaging in two-dimensional inverse scattering from thin electromagnetic inclusions, SIAM Journal on Applied Mathematics, 75, 1, 209-228, (2015) · Zbl 1312.78006 · doi:10.1137/140975176
[18] Park, W.-K.; Lesselier, D., MUSIC-type imaging of a thin penetrable inclusion from its multi-static response matrix, Inverse Problems, 25, 7, (2009) · Zbl 1180.35571 · doi:10.1088/0266-5611/25/7/075002
[19] Ammari, H.; Garnier, J.; Kang, H.; Lim, M.; Sølna, K., Multistatic imaging of extended targets, SIAM Journal on Imaging Sciences, 5, 2, 564-600, (2012) · Zbl 1344.78023 · doi:10.1137/10080631x
[20] Hou, S.; Sølna, K.; Zhao, H., A direct imaging algorithm for extended targets, Inverse Problems, 22, 4, 1151-1178, (2006) · Zbl 1112.78014 · doi:10.1088/0266-5611/22/4/003
[21] Hou, S.; Sølna, K.; Zhao, H., A direct imaging method using far-field data, Inverse Problems, 23, 4, 1533-1546, (2007) · Zbl 1127.65031 · doi:10.1088/0266-5611/23/4/010
[22] Scholz, B., Towards virtual electrical breast biopsy: space-frequency MUSIC for trans-admittance data, IEEE Transactions on Medical Imaging, 21, 6, 588-595, (2002) · doi:10.1109/tmi.2002.800609
[23] Ammari, H.; Kang, H., Reconstruction of Small Inhomogeneities from Boundary Measurements. Reconstruction of Small Inhomogeneities from Boundary Measurements, Lecture Notes in Mathematics, 1846, (2004), Berlin, Germany: Springer, Berlin, Germany · Zbl 1113.35148 · doi:10.1007/b98245
[24] Cheney, M., The linear sampling method and the MUSIC algorithm, Inverse Problems, 17, 4, 591-595, (2001) · Zbl 0988.00112 · doi:10.1088/0266-5611/17/4/301
[25] Chen, B.; Stamnes, J. J.; Devaney, A. J.; Pedersen, H. M.; Stamnes, K., Two-dimensional optical diffraction tomography for objects embedded in a random medium, Pure and Applied Optics: Journal of the European Optical Society Part A, 7, 5, 1181-1199, (1998) · doi:10.1088/0963-9659/7/5/024
[26] Borcea, L.; Papanicolaou, G.; Tsogka, C.; Berryman, J., Imaging and time reversal in random media, Inverse Problems, 18, 5, 1247-1279, (2002) · Zbl 1047.74032 · doi:10.1088/0266-5611/18/5/303
[27] Kirsch, A., The MUSIC algorithm and the factorization method in inverse scattering theory for inhomogeneous media, Inverse Problems, 18, 4, 1025-1040, (2002) · Zbl 1027.35158 · doi:10.1088/0266-5611/18/4/306
[28] Shevtsov, B. M., Backscattering and inverse problem in random media, Journal of Mathematical Physics, 40, 9, 4359-4373, (1999) · Zbl 1062.82513 · doi:10.1063/1.532972
[29] Chen, X., Multiple signal classification method for detecting point-like scatterers embedded in an inhomogeneous background medium, Journal of the Acoustical Society of America, 127, 4, 2392-2397, (2010) · doi:10.1121/1.3303984
[30] Rao, T.; Chen, X., Analysis of the time-reversal operator for a single cylinder under two-dimensional settings, Journal of Electromagnetic Waves and Applications, 20, 15, 2153-2165, (2006) · doi:10.1163/156939306779322503
[31] Beretta, E.; Francini, E., Asymptotic formulas for perturbations of the electromagnetic fields in the presence of thin imperfections, Contemporary Mathematics, 333, 49-63, (2003) · Zbl 1148.35354
[32] Park, W.-K., Multi-frequency subspace migration for imaging of perfectly conducting, arc-like cracks in full- and limited-view inverse scattering problems, Journal of Computational Physics, 283, 52-80, (2015) · Zbl 1351.78025 · doi:10.1016/j.jcp.2014.11.036
[33] Park, W.-K., Analysis of a multi-frequency electromagnetic imaging functional for thin, crack-like electromagnetic inclusions, Applied Numerical Mathematics, 77, 31-42, (2014) · Zbl 1302.94011 · doi:10.1016/j.apnum.2013.11.001
[34] Joh, Y.-D.; Park, W.-K., Structural behavior of the MUSIC-type algorithm for imaging perfectly conducting cracks, Progress in Electromagnetics Research, 138, 211-226, (2013) · doi:10.2528/pier13013104
[35] Colton, D.; Haddar, H.; Monk, P., The linear sampling method for solving the electromagnetic inverse scattering problem, SIAM Journal on Scientific Computing, 24, 3, 719-731, (2002) · Zbl 1037.78008 · doi:10.1137/s1064827501390467
[36] Haddar, H.; Monk, P., The linear sampling method for solving the electromagnetic inverse medium problem, Inverse Problems, 18, 3, 891-906, (2002) · Zbl 1006.35102 · doi:10.1088/0266-5611/18/3/323
[37] Kirsch, A.; Ritter, S., A linear sampling method for inverse scattering from an open arc, Inverse Problems, 16, 1, 89-105, (2000) · Zbl 0968.35129 · doi:10.1088/0266-5611/16/1/308
[38] Joh, Y.-D.; Park, W.-K., Analysis of multi-frequency subspace migration weighted by natural logarithmic function for fast imaging of two-dimensional thin, arc-like electromagnetic inhomogeneities, Computers & Mathematics with Applications, 68, 12, 1892-1904, (2014) · Zbl 1369.78356 · doi:10.1016/j.camwa.2014.10.005
[39] Li, J.; Liu, H.; Zou, J., Locating multiple multiscale acoustic scatterers, Multiscale Modeling & Simulation, 12, 3, 927-952, (2014) · Zbl 1328.35135 · doi:10.1137/13093409x
[40] Ito, K.; Jin, B.; Zou, J., A direct sampling method for inverse electromagnetic medium scattering, Inverse Problems, 29, 9, (2013) · Zbl 1290.78008 · doi:10.1088/0266-5611/29/9/095018
[41] Ito, K.; Jin, B.; Zou, J., A direct sampling method to an inverse medium scattering problem, Inverse Problems, 28, 2, (2012) · Zbl 1241.78025 · doi:10.1088/0266-5611/28/2/025003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.