×

zbMATH — the first resource for mathematics

Generalizations of vector quasivariational inclusion problems with set-valued maps. (English) Zbl 1176.90645
The main aim of this paper is to give some existence results for a general model concerning several quasi-equilibrium problems with set-valued maps, which includes many known scalar or vector such as these programs. This contribution is also useful for the corresponding numerical methods. Significant comments, remarks and pertinent references complete this research work.

MSC:
90C48 Programming in abstract spaces
90C30 Nonlinear programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ansari Q.H. and Flores-Bazan F. (2003). Generalized vector quasi-equilibrium problems with applications. J. Math. Anal. Appl. 277: 246–256 · Zbl 1022.90023
[2] Ansari Q.H. and Yao J.-C. (1999). An existence result for the generalized vector equilibrium problem. Appl. Math. Lett. 12: 53–56 · Zbl 1014.49008
[3] Aubin J.P. (1979). Mathematical Methods of Game and Economic Theory. North-Holland, Amsterdam · Zbl 0452.90093
[4] Blum E. and Oettli W. (1994). From optimization and variational inequalities to equilibrium problems. The Math. Stud. 63: 123–145 · Zbl 0888.49007
[5] Chan D. and Pang J.S. (1982). The generalized quasi-variational inequality problems. Math. Oper. Res. 7: 211–222 · Zbl 0502.90080
[6] Chang S., Lee B.S., Wu X., Cho Y.J. and Lee G.M. (1996). On the generalized quasi-variational inequality problems. J. Math. Anal. Appl. 203: 686–711 · Zbl 0867.49008
[7] Chen M.-P., Lin L.-J. and Park S. (2003). Remarks on generalized quasi-equilibrium problems. Nonlinear Anal. 52: 433–444 · Zbl 1029.47031
[8] Ding X.P. and Park J.Y. (2004). Generalized vector equilibrium problems in generalized convex spaces. J. Optm. Theory Appl. 120: 327–353 · Zbl 1100.90054
[9] Ding X.P. and Tarafdar E. (2000). Generalized vector variational-like inequalities with C x -pseudomonotone set-valued mappings. In: Giannessi, F. (eds) Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, pp 125–140. Kluwer Academic Publishers, Dordrecht · Zbl 0991.49010
[10] Fakhar M. and Zafarani J. (2005). Generalized vector equilibrium problems for pseudomonotone multivalued bifunctions. J. Optm. Theory Appl. 126: 109–124 · Zbl 1093.90055
[11] Fan K. (1961). A generalization of Tychonoff’s fixed point theorem. Math. Ann. 142: 305–310 · Zbl 0093.36701
[12] Ferro F. (1982). Minimax type theorems for n-valued functions. Ann Math. Pura Appl. 32: 113–130 · Zbl 0508.49010
[13] Fu J.Y. (2000). Generalized vector quasi-equilibrium problems. Math. Methods Oper. Res. 52: 57–64 · Zbl 1054.90068
[14] Fu J.Y. (2003). Symmetric vector quasi-equilibrium problems. J. Math. Anal. Appl. 285: 708–713 · Zbl 1031.49013
[15] Fu J.-Y. and Wan A.-H. (2002). Generalized vector equilibrium problems with set-valued mappings. Math. Methods Oper. Res. 56: 259–268 · Zbl 1023.90057
[16] Hai N.X. and Khanh P.K. (2007). The solution existence of general variational inclusion problems. J. Math. Anal. Appl. 328: 1268–1277 · Zbl 1108.49020
[17] Hou S.H., Yu H. and Chen G.Y. (2003). On vector quasi-equilibrium problems with set-valued maps. J. Optim. Theory Appl. 119: 485–498 · Zbl 1061.90099
[18] Jahn J. (1986). Mathematical Vector Optimization in Partially Ordered Linear Spaces. Verlag Peter Lang GmbH, Frankfurt am Main · Zbl 0578.90048
[19] Konnov I.V. and Yao J.C. (1999). Existence of solutions for generalized vector equilibrium problems. J. Math. Anal. Appl. 233: 328–335 · Zbl 0933.49004
[20] Kum S.H. (1994). A generalization of generalized quasi-variational inequalities. J. Math. Anal. Appl. 182: 158–164 · Zbl 0804.49012
[21] Lee G.M., Lee B.S. and Chang S.S. (1996). On vector quasivariational inequalities. J. Math. Anal. Appl. 203: 626–638 · Zbl 0866.49016
[22] Li S.L., Teo K.L. and Yang X.Q. (2005). Generalized vector quasi-equilibrium problems. Math. Methods Oper. Res. 61: 385–397 · Zbl 1114.90114
[23] Lin L.J. (1996). Pre-vector variational inequalities. Bull. Austr. Math. Soc. 53: 63–70 · Zbl 0858.49008
[24] Lin L.J. (2005). Existence theorems of simultaneous equilibrium problems and generalized vector quasi-saddle points. J. Glob. Optim. 32: 613–632 · Zbl 1135.49009
[25] Lin L.J., Ansari Q.H. and Wu J.Y. (2003). Geometric properties and coincidence theorems with applications to generalized vector equilibrium problems. J. Optim. Theory Appl. 117: 121–137 · Zbl 1063.90062
[26] Lin L.-J. and Chen H.-L. (2005). The study of KKM theorems with applications to vector equilibrium problems and implicit vector variational inequalities problems. J. Glob. Optim. 32: 135–157 · Zbl 1079.90153
[27] Lin L.-J. and Cheng S.F. (2002). Nash-type equilibrium theorems and competitive Nash-type equilibrium theorems. Comput. Math. Appl. 44: 1369–1378 · Zbl 1103.91308
[28] Lin L.J. and Park S. (1998). On some generalized quasi-equilibrium problems. J. Math. Anal. Appl. 224: 167–181 · Zbl 0924.49008
[29] Lin L.-J. and Tsai Y.-L. (2005). On vector quasi-saddle points of set-valued maps. In: Eberkard, A., Hadjisavvas, N. and Luc, D.T. (eds) Generalized Convexity, Generalized Monotonicity and Applications., pp 311–319. Springer-Verlag, New York · Zbl 1138.90499
[30] Lin L.J., Yu Z.T. and Kassay G. (2002). Existence of equilibria for multivalued mappings and its application to vectorial equilibria. J. Optim. Theory Appl. 114: 189–208 · Zbl 1023.49014
[31] Luc D.T. (1989). Theory of Vector Optimization. Lectures Notes in Economics and Mathematical Systems, vol 319. Springer-Verlag, Berlin · Zbl 0688.90051
[32] Luc D.T. and Tan N.X. (2004). Existence conditions in variational inclusions with constraints. Optim. 53: 505–515 · Zbl 1153.49305
[33] Massey W.S. (1970). Singular Homology Theory. Springer-Verlag, New York
[34] Oettli W. and Schläger D. (1997). Generalized vectorial equilibria and generalized monotonicity. In: Brokate, M. and Siddiqi, A.H. (eds) Functional Analysis with Current Applications, pp 145–154. Longman, London
[35] Oettli W. and Schläger D. (1998). Existence of equilibria for monotone multivalued mappings. Math. Methods Oper. Res. 48: 219–228 · Zbl 0930.90077
[36] Park S. (1992). Some coincidence theorems on acyclic multifunctions and applications to KKM theory. In: Tan, K.-K. (eds) Fixed Point Theory and Applications, pp 248–277. World Sci, NJ
[37] Sach P.H. and Tuan L.A. (2007). Existence results for set-valued vector quasi-equilibrium problems. J. Optim. Theory Appl. 133: 229–240 · Zbl 1144.49012
[38] Song W. (2000). Vector equilibrium problems with set-valued mapping. In: Giannessi, F. (eds) Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, pp 403–422. Kluwer Academic Publishers, Dordrecht · Zbl 0993.49011
[39] Tan N.X. (2004). On the existence of solutions of quasivariational inclusion problem. J. Optim. Theory Appl. 123: 619–638 · Zbl 1059.49020
[40] Tanaka T. (1994). Generalized quasiconvexities, cone saddle points and minimax theorems for vector-valued functions. J. Optim. Theory Appl. 81: 355–377 · Zbl 0826.90102
[41] Tian G. (1993). Generalized quasi-variational-like inequality problem. Math. Oper. Res. 18: 752–764 · Zbl 0811.49010
[42] Tuan L.A. and Sach P.H. (2004). Existence of solutions of generalized quasivariational inequalities with set-valued maps. Acta Math. Vietnam. 29(3): 309–316 · Zbl 1064.49007
[43] Tuan L.A. and Sach P.H. (2005). Existence theorems for some generalized quasivariational inclusion problems. Vietnam J. Math. 33(1): 111–122 · Zbl 1082.49011
[44] Wu X., Thompson B. and Yuan G.X.-Z. (2003). Quasiequilibrium problems in H-spaces. Comput. Math. Appl. 45: 1629–1636 · Zbl 1055.90089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.