Rebhan, Anton; Turk, Günther Polarization effects in light-by-light scattering: Euler-Heisenberg versus Born-Infeld. (English) Zbl 1364.81245 Int. J. Mod. Phys. A 32, No. 10, Article ID 1750053, 16 p. (2017). Cited in 1 Document MSC: 81V10 Electromagnetic interaction; quantum electrodynamics 81U05 \(2\)-body potential quantum scattering theory Keywords:QED; Born-Infeld electrodynamics; light-by-light scattering PDF BibTeX XML Cite \textit{A. Rebhan} and \textit{G. Turk}, Int. J. Mod. Phys. A 32, No. 10, Article ID 1750053, 16 p. (2017; Zbl 1364.81245) Full Text: DOI References: [1] Euler, H.; Kockel, B., Naturwiss., 23, 246, (1935) [2] Euler, H., Ann. Phys., 26, 398, (1936) [3] Akhieser, A.; Landau, L.; Pomeranchook, I., Nature, 138, 206, (1936) [4] Achieser, A., Phys. Z. Sowjetunion, 11, 263, (1937) [5] Karplus, R.; Neuman, M., Phys. Rev., 83, 776, (1951) [6] Heisenberg, W.; Euler, H., Z. Phys., 98, 714, (1936) [7] Weisskopf, V., Kong. Dan. Vid. Selsk. Mat.-fys. Medd., XIV/6, 1, (1936) [8] Dittrich, W.; Gies, H., 166, 1, (2000) [9] Dunne, G. V.; Shifman, M.; Vainshtein, A.; Wheater, J., From Fields to Strings: Circumnavigating Theoretical Physics — Ian Kogan Memorial Collection, Heisenberg-Euler effective Lagrangians: Basics and extensions, 445-522, (2004), World Scientific, Singapore [10] Born, M.; Infeld, L., Proc. R. Soc. London A, 144, 425, (1934) [11] Schrödinger, E., Proc. R. Irish Acad. A, 47, 77, (1942) [12] Schrödinger, E., Proc. R. Irish Acad. A, 49, 59, (1943) [13] Fradkin, E. S.; Tseytlin, A. A., Phys. Lett. B, 163, 123, (1985) [14] Tseytlin, A. A., Nucl. Phys. B, 276, 391, (1986) [15] Gibbons, G. W., Nucl. Phys. B, 514, 603, (1998) [16] Gibbons, G. W.; Herdeiro, C. A. R., Phys. Rev. D, 63, 064006, (2001) [17] Marklund, M.; Lundin, J., Eur. Phys. J. D, 55, 319, (2009) [18] Heinzl, T.; Liesfeld, B.; Amthor, K.-U.; Schwoerer, H.; Sauerbrey, R.; Wipf, A., Opt. Commun., 267, 318, (2006) [19] Karbstein, F.; Gies, H.; Reuter, M.; Zepf, M., Phys. Rev. D, 92, 071301, (2015) [20] Klein, J. J.; Nigam, B. P., Phys. Rev., 135, B1279, (1964) [21] Baier, R.; Breitenlohner, P., Nuovo Cimento, 47, 117, (1967) [22] Brezin, E.; Itzykson, C., Phys. Rev. D, 3, 618, (1971) [23] Fouché, M.; Battesti, R.; Rizzo, C., Phys. Rev. D, 93, 093020, (2016) [24] Duff, M. J.; Isham, C. J., Phys. Lett. B, 86, 157, (1979) [25] Grisaru, M. T.; Pendleton, H. N.; van Nieuwenhuizen, P., Phys. Rev. D, 15, 996, (1977) [26] Schrödinger, E., Proc. R. Soc. London A, 150, 465, (1935) [27] Białynicki-Birula, I.; Jancewicz, B.; Lukierski, J., Quantum Theory of Particles and Fields — Birthday Volume Dedicated to Jan Łopuszański, Nonlinear electrodynamics: Variations on a theme by Born and Infeld, 31-48, (1983), World Scientific, Singapore [28] Gibbons, G. W.; Rasheed, D. A., Nucl. Phys. B, 454, 185, (1995) [29] Gaillard, M. K.; Zumino, B., 509, 121, (1998) [30] Kuzenko, S. M.; Tyler, S. J., J. High Energy Phys., 05, 081, (2007) [31] Cecotti, S.; Ferrara, S., Phys. Lett. B, 187, 335, (1987) [32] Dávila, J. M.; Schubert, C.; Trejo, M. A., Int. J. Mod. Phys. A, 29, 1450174, (2014) [33] Itzykson, C.; Zuber, J.-B., Quantum Field Theory, (1985), McGraw-Hill [34] Liang, Y.; Czarnecki, A., Can. J. Phys., 90, 11, (2012) [35] Lifshitz, E.; Berestetskii, V.; Pitaevskii, L., Quantum Electrodynamics, (1982), Butterworth-Heinemann [36] Hashimoto, K.; Oka, T.; Sonoda, A., J. High Energy Phys., 06, 085, (2014) [37] Lutzky, M.; Toll, J. S., Phys. Rev., 113, 1649, (1959) [38] Boillat, G., J. Math. Phys., 11, 941, (1970) [39] Whitham, G. B., Linear and Nonlinear Waves, (1974), Wiley, New York · Zbl 0373.76001 [40] Rosly, A. A.; Selivanov, K. G., Helicity conservation in Born-Infeld theory, Proc. 12th Int. Seminar on High Energy Physics, Quarks’2002, (2002) [41] Bern, Z.; Dixon, L. J.; Dunbar, D. C.; Kosower, D. A., Nucl. Phys. B, 425, 217, (1994) [42] Mignani, R. P.; Testa, V.; Caniulef, D. G.; Taverna, R.; Turolla, R.; Zane, S.; Wu, K., Mon. Not. R. Astron. Soc., 465, 492, (2016) [43] Obukhov, Y. N.; Rubilar, G. F., Phys. Rev. D, 66, 024042, (2002) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.