×

Optimal portfolios for financial markets with Wishart volatility. (English) Zbl 1283.93306

Summary: We consider a multi asset financial market with stochastic volatility modeled by a Wishart process. This is an extension of the one-dimensional Heston model. Within this framework we study the problem of maximizing the expected utility of terminal wealth for power and logarithmic utility. We apply the usual stochastic control approach and obtain, explicitly, the optimal portfolio strategy and the value function in some parameter settings. In particular, we do this when the drift of the assets is a linear function of the volatility matrix. In this case the affine structure of the model can be exploited. In some cases we obtain a Feynman-Kac representation of the candidate value function. Though the approach we use is quite standard, the hard part is to identify when the solution of the Hamilton-Jacobi-Bellman equation is finite. This involves a couple of matrix analytic arguments. In a numerical study we discuss the influence of the investors’ risk aversion on the hedging demand.

MSC:

93E20 Optimal stochastic control
91G80 Financial applications of other theories
91G10 Portfolio theory
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] Bru, M.-F. (1991). Wishart processes. J. Theoret. Prob. 4 , 725-751. · Zbl 0737.60067 · doi:10.1007/BF01259552
[2] Buraschi, A., Porchia, P. and Trojani, F. (2010). Correlation risk and optimal portfolio choice. J. Finance 65 , 393-420.
[3] Cont, R. and Da Fonseca, J. (2002). Dynamics of implied volatility surfaces. Quant. Finance 2 , 45-60. · doi:10.1088/1469-7688/2/1/304
[4] Da Fonseca, J., Grasselli, M. and Tebaldi, C. (2007). Option pricing when correlations are stochastic: An analytical framework. Rev. Derivatives Res. 10 , 151-180. · Zbl 1174.91006 · doi:10.1007/s11147-008-9018-x
[5] Da Fonseca, J., Grasselli, M. and Tebaldi, C. (2008). A multifactor volatility Heston model. Quant. Finance 8 , 591-604. · Zbl 1152.91500 · doi:10.1080/14697680701668418
[6] Gnoatto, A. and Grasselli, M. (2014). The explicit Laplace transform for the Wishart process. To appear in J. Appl. Prob. · Zbl 1304.65008
[7] Gourieroux, C. and Sufana, R. (2003). Wishart quadratic term structure models. SSRN E-library 1-35. · Zbl 1231.91455
[8] Gourieroux, C. and Sufana, R. (2004). Derivative pricing with Wishart multivariate stochastic volatility: Application to credit risk. SSRN E-library 1-44. · Zbl 1209.91179
[9] Hata, H. and Sekine, J. (2013). Risk-sensitive asset management under a Wishart Autoregressive factor model. J. Math. Finance 3 , 222-229.
[10] Heston, S. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financial Studies 6 , 327-343. · Zbl 1384.35131
[11] Kallsen, J. and Muhle-Karbe, J. (2010). Utility maximization in affine stochastic volatility models. Internat. J. Theor. Appl. Finance 13 , 459-477. · Zbl 1198.91192 · doi:10.1142/S0219024910005851
[12] Korn, R. and Kraft, H. (2004). On the stability of continuous-time portfolio problems with stochastic opportunity set. Math. Finance 14 , 403-414. · Zbl 1134.91437 · doi:10.1111/j.0960-1627.2004.00197.x
[13] Kraft, H. (2005). Optimal portfolios and Heston’s stochastic volatility model: an explicit solution for power utility. Quant. Finance 5 , 303-313. · Zbl 1134.91438 · doi:10.1080/14697680500149503
[14] Liptser, R. S. and Shiryaev, A. N. (2001). Statistics of random processes: I , (Appl. Math. 5 ). Springer, Berlin. · Zbl 1008.62072
[15] Liu, J. (2007). Portfolio selection in stochastic environments. Rev. Financial Studies 20 , 1-39.
[16] Matsumoto, S. (2012). General moments of the inverse real Wishart distribution and orthogonal Weingarten functions. J. Theoret. Prob. 25 , 798-822. · Zbl 1256.15019 · doi:10.1007/s10959-011-0340-0
[17] Mayerhofer, E., Pfaffel, O. and Stelzer, R. (2011). On strong solutions for positive definite jump diffusions. Stoch. Process. Appl. 121 , 2072-2086. · Zbl 1225.60096 · doi:10.1016/j.spa.2011.05.006
[18] Muhle-Karbe, J., Pfaffel, O. and Stelzer, R. (2012). Option pricing in multivariate stochastic volatility models of OU type. SIAM J. Financial Math. 3 , 66-94. · Zbl 1255.91133 · doi:10.1137/100803687
[19] Rellich, F. (1969). Perturbation Theory of Eigenvalue Problems . Gordon and Breach Science Publishers, New York. · Zbl 0181.42002
[20] Richter, A. (2012). Explicit solutions to quadratic BSDEs and applications to utility maximization in multivariate affine stochastic volatility models. Preprint. Available at http://arxiv.org/abs/1201.2877v1.
[21] Rieder, U. and Bäuerle, N. (2005). Portfolio optimization with unobservable Markov-modulated drift process. J. Appl. Prob. 42 , 362-378. · Zbl 1138.93428 · doi:10.1239/jap/1118777176
[22] Sultan, S. A. and Tracy, D. S. (1996). Moments of Wishart distribution. Stoch. Anal. Appl. 14 , 237-243. · Zbl 0859.62055 · doi:10.1080/07362999608809436
[23] Zariphopoulou, T. (2001). A solution approach to valuation with unhedgeable risks. Finance Stoch. 5 , 61-82. \endharvreferences · Zbl 0977.93081 · doi:10.1007/PL00000040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.