×

Optimal transport from Lebesgue to Poisson. (English) Zbl 1279.60024

The authors introduce a concept of optimal (semi-)couplings between the Lebesgue measure and a point process in \(\mathbb{R}^d\). The optimal coupling minimizes an asymptotic mean cost functional \[ \mathfrak{E}_{\infty } (q) = \liminf_{n \to \infty} \frac{1}{ \lambda ^d (B_n)} \;\operatorname{E} \int_{\mathbb{R}^d \times B_n} \vartheta (|x-y|) \, dq (w,x,y), \] over all couplings \(q\) of \( \lambda^d\) and the point process; here \(B_n = [0,2^n)^d\). The authors prove existence and uniqueness of an optimal semi-coupling whenever there exists one with finite asymptotic mean transportation cost. They prove the convergence of optimal couplings on finite doubling sequences of boxes \((B_n(z,\gamma))\) towards an optimal coupling between \(\lambda^d\) and the point process. For \(d \leq 2\), the asymptotic mean transportation cost is finite for the Poisson point process for \(L^p\)-costs with \(p < \frac{d}{2}\) while for \(d \geq 3\) or intensity \(\beta < 1\) finiteness holds for any \(p < \infty\). In the case \(\beta=1\) for \(d > 2 (p \wedge 1)\), the optimal asymptotic costs are of order \(d\,^{^{p\!_{/\!_2}}}\).

MSC:

60D05 Geometric probability and stochastic geometry
52A22 Random convex sets and integral geometry (aspects of convex geometry)
49Q20 Variational problems in a geometric measure-theoretic setting
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Ajtai, M., Komlós, J. and Tusnády, G. (1984). On optimal matchings. Combinatorica 4 259-264. · Zbl 0562.60012 · doi:10.1007/BF02579135
[2] Ambrosio, L. (2003). Lecture notes on optimal transport problems. In Mathematical Aspects of Evolving Interfaces ( Funchal , 2000). Lecture Notes in Math. 1812 1-52. Springer, Berlin. · Zbl 1047.35001 · doi:10.1007/978-3-540-39189-0_1
[3] Ambrosio, L., Gigli, N. and Savaré, G. (2008). Gradient Flows in Metric Spaces and in the Space of Probability Measures , 2nd ed. Birkhäuser, Basel. · Zbl 1145.35001
[4] Ambrosio, L., Savaré, G. and Zambotti, L. (2009). Existence and stability for Fokker-Planck equations with log-concave reference measure. Probab. Theory Related Fields 145 517-564. · Zbl 1235.60105 · doi:10.1007/s00440-008-0177-3
[5] Aurenhammer, F. (1991). Voronoi diagrams-A survey of a fundamental geometric data structure. ACM Computing Surveys ( CSUR ) 23 345-405.
[6] Beiglböck, M., Goldstern, M., Maresch, G. and Schachermayer, W. (2009). Optimal and better transport plans. J. Funct. Anal. 256 1907-1927. · Zbl 1157.49019 · doi:10.1016/j.jfa.2009.01.013
[7] Brenier, Y. (1991). Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44 375-417. · Zbl 0738.46011 · doi:10.1002/cpa.3160440402
[8] Chatterjee, S., Peled, R., Peres, Y. and Romik, D. (2010). Phase transitions in gravitational allocation. Geom. Funct. Anal. 20 870-917. · Zbl 1209.60008 · doi:10.1007/s00039-010-0090-7
[9] Chatterjee, S., Peled, R., Peres, Y. and Romik, D. (2010). Gravitational allocation to Poisson points. Ann. of Math. (2) 172 617-671. · Zbl 1206.60013 · doi:10.4007/annals.2010.172.617
[10] Dudley, R. M. (2002). Real Analysis and Probability. Cambridge Studies in Advanced Mathematics 74 . Cambridge Univ. Press, Cambridge. · Zbl 1023.60001
[11] Figalli, A. (2010). The optimal partial transport problem. Arch. Ration. Mech. Anal. 195 533-560. · Zbl 1245.49059 · doi:10.1007/s00205-008-0212-7
[12] Gangbo, W. and McCann, R. J. (1996). The geometry of optimal transportation. Acta Math. 177 113-161. · Zbl 0887.49017 · doi:10.1007/BF02392620
[13] Hoffman, C., Holroyd, A. E. and Peres, Y. (2006). A stable marriage of Poisson and Lebesgue. Ann. Probab. 34 1241-1272. · Zbl 1111.60008 · doi:10.1214/009117906000000098
[14] Holroyd, A. E. and Liggett, T. M. (2001). How to find an extra head: Optimal random shifts of Bernoulli and Poisson random fields. Ann. Probab. 29 1405-1425. · Zbl 1019.60048
[15] Holroyd, A. E., Pemantle, R., Peres, Y. and Schramm, O. (2009). Poisson matching. Ann. Inst. Henri Poincaré Probab. Stat. 45 266-287. · Zbl 1175.60012 · doi:10.1214/08-AIHP170
[16] Holroyd, A. E. and Peres, Y. (2005). Extra heads and invariant allocations. Ann. Probab. 33 31-52. · Zbl 1097.60032 · doi:10.1214/009117904000000603
[17] Last, G. and Thorisson, H. (2009). Invariant transports of stationary random measures and mass-stationarity. Ann. Probab. 37 790-813. · Zbl 1176.60036 · doi:10.1214/08-AOP420
[18] Lautensack, C. and Zuyev, S. (2008). Random Laguerre tessellations. Adv. in Appl. Probab. 40 630-650. · Zbl 1154.60011 · doi:10.1239/aap/1222868179
[19] Lott, J. and Villani, C. (2009). Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math. (2) 169 903-991. · Zbl 1178.53038 · doi:10.4007/annals.2009.169.903
[20] Markó, R. and Timár, Á. (2011). A poisson allocation of optimal tail. Available at . 1103.5259
[21] Ohta, S.-I. (2009). Uniform convexity and smoothness, and their applications in Finsler geometry. Math. Ann. 343 669-699. · Zbl 1160.53033 · doi:10.1007/s00208-008-0286-4
[22] Ohta, S.-I. and Sturm, K.-T. (2009). Heat flow on Finsler manifolds. Comm. Pure Appl. Math. 62 1386-1433. · Zbl 1176.58012 · doi:10.1002/cpa.20273
[23] Otto, F. (2001). The geometry of dissipative evolution equations: The porous medium equation. Comm. Partial Differential Equations 26 101-174. · Zbl 0984.35089 · doi:10.1081/PDE-100002243
[24] Otto, F. and Villani, C. (2000). Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173 361-400. · Zbl 0985.58019 · doi:10.1006/jfan.2000.3557
[25] Rachev, S. T. and Rüschendorf, L. (1998). Mass Transportation Problems. Vol. I . Springer, New York. · Zbl 0990.60500
[26] Sturm, K.-T. (2006). On the geometry of metric measure spaces. I. Acta Math. 196 65-131. · Zbl 1105.53035 · doi:10.1007/s11511-006-0002-8
[27] Sturm, K.-T. (2006). On the geometry of metric measure spaces. II. Acta Math. 196 133-177. · Zbl 1106.53032 · doi:10.1007/s11511-006-0003-7
[28] Talagrand, M. (1994). The transportation cost from the uniform measure to the empirical measure in dimension \(\geq3\). Ann. Probab. 22 919-959. · Zbl 0809.60015 · doi:10.1214/aop/1176988735
[29] Timar, A. (2009). Invariant matchings of exponential tail on coin flips in \(Z^{d}\). Available at . 0909.1090
[30] Touchard, J. (1956). Nombres exponentiels et nombres de Bernoulli. Canad. J. Math. 8 305-320. · Zbl 0071.06105 · doi:10.4153/CJM-1956-034-1
[31] Villani, C. (2003). Topics in Optimal Transportation. Graduate Studies in Mathematics 58 . Amer. Math. Soc., Providence, RI. · Zbl 1106.90001
[32] Villani, C. (2009). Optimal Transport : Old and New. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 338 . Springer, Berlin. · Zbl 1156.53003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.