×

A capacitary method for the asymptotic analysis of Dirichlet problems for monotone operators. (English) Zbl 0889.35010

Given a nonlinear elliptic operator of the form \(Au=-\text{div} (a(x,Du))\), where \(a:\Omega \times\mathbb{R}^n \to\mathbb{R}^n\) satisfies usual \(p\)-growth and monotonicity assumptions, it is known that for every sequence \((\Omega_j)\) of subdomains of \(\Omega\) and for every right-hand side \(f\) the sequence \((u_j)\) of solutions of the Dirichlet problems \[ Au= f \quad \text{in }\Omega_j, \qquad u\in W_0^{1,p} (\Omega_j) \] always admits a subsequence which converges weakly in \(W_0^{1,p} (\Omega)\) to the solution \(u\) of the limit problem which is formally written as \[ Au+ b(x,u) \mu=f \quad \text{in } \Omega, \qquad u\in W_0^{1,p} (\Omega) \cap L^p_\mu (\Omega). \] The precise meaning of the problem above is explained in the paper, where a method for constructing the function \(b\) and the measure \(\mu\) from the sequence \((\Omega_j)\) is given. This method is related to the notion of \(A\)-capacity of compact sets \(K\subset \Omega\) with respect to a constant \(s\): \[ C_A(K,s) =\int_{\Omega \setminus K} a(x,Du) \cdot Du dx, \] where \(u\) is the solution of the Dirichlet problem \[ Au=0 \quad \text{in } \Omega \setminus K, \qquad u=s \text{ on } \partial K, \quad u=0 \text{ on } \partial \Omega. \]
Reviewer: G.Buttazzo (Pisa)

MSC:

35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35J60 Nonlinear elliptic equations
49J45 Methods involving semicontinuity and convergence; relaxation
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Balzano, M., A derivation theorem for countably subadditive set functions, Boll. Un. Mat. Ital., 7, 2, 241-249 (1988) · Zbl 0651.28003
[2] Baxter, J. R.; Maso, G. Dal; Mosco, U., Stopping tintes and г-convergence, Trans. Amer. Math. Soc., 303, 1-38 (1987) · Zbl 0627.60071 · doi:10.2307/2000777
[3] Baxter, J. R.; Jain, N. C., Asymptotic capacities for finely divided bodies and stopped diffusions, Illinois J. Math., 31, 469-495 (1987) · Zbl 0618.60072
[4] Buttazzo, G.; Maso, G. Dal, Shape optimization for Dirichlet problems: relaxed solutions and optimality conditions, Appl. Math. Optim., 23, 17-49 (1991) · Zbl 0762.49017 · doi:10.1007/BF01442391
[5] Buttazzo, G.; Maso, G. Dal; Mosco, U., A derivation theorem for capacities with respect to a Radon measure, J. Funct. Anal., 71, 263-278 (1987) · Zbl 0622.28006 · doi:10.1016/0022-1236(87)90004-8
[6] J. Casado Diaz and A. Garroni,Asymptotic behaviour of nonlinear Dirichlet elliptic systems on varying domains, to appear. · Zbl 0952.35036
[7] Choquet, G., Forme abstraite du théorème de capacitabilité, Ann. Inst. Fourier (Grenoble), 9, 83-89 (1959) · Zbl 0093.29701
[8] Dal Maso, G., On the integral representation of certain local functional, Ricerche Mat., 32, 85-113 (1983) · Zbl 0543.49001
[9] Dal Maso, G., г-convergenceand Μ-capacities, Ann. Scuola Norm. Sup. Pisa C1. Sci., 14, 4, 423-464 (1987) · Zbl 0657.49005
[10] Dal Maso, G., An Introduction to г-Convergence (1993), Boston: BirkhÄuser, Boston · Zbl 0816.49001
[11] Dal Maso, G.; Defranceschi, A., Some properties of a class of nonlinear variational Μ-capacities, J. Funct. Anal., 79, 476-492 (1988) · Zbl 0657.49006 · doi:10.1016/0022-1236(88)90022-5
[12] Dal Maso, G.; Defranceschi, A., Limits of nonlinear Dirichlet problems in varying domains, Manuscripta Math., 61, 251-278 (1988) · Zbl 0653.49017 · doi:10.1007/BF01258438
[13] Dal Maso, G.; Garroni, A., New results on the asymptotic behaviour of Dirichlet problems in perforated domains, Math. Models Methods Appl. Sci., 3, 373-407 (1994) · Zbl 0804.47050 · doi:10.1142/S0218202594000224
[14] G. Dal Maso and A. Garroni,The capacity method for asymptotic Dirichlet problems, Asymptotic Anal., to appear. · Zbl 0902.35016
[15] Dal Maso, G.; Mosco, U., Wiener criteria and energy decay for relaxed Dirichlet problems, Arch. Rational Mech. Anal., 95, 345-387 (1986) · Zbl 0634.35033 · doi:10.1007/BF00276841
[16] Dal Maso, G.; Mosco, U., Wiener’s criterion and г-convergence, Appl. Math. Optim., 15, 15-63 (1987) · Zbl 0644.35033 · doi:10.1007/BF01442645
[17] G. Dal Maso and F. Murat,Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci., to appear. · Zbl 0899.35007
[18] G. Dal Maso and I. V. Skrypnik,Capacity theory for monotone operators, Potential Anal., to appear. · Zbl 0887.31005
[19] G. Dal Maso and I. V. Skrypnik,Asymptotic behaviour of nonlinear Dirichlet problems in perforated domains, Ann. Mat. Pura Appl., to appear. · Zbl 0991.35034
[20] G. Dal Maso and R. Toader,A capacity method for the study of Dirichlet problems for elliptic systems in varying domains, Rend. Sem. Mat. Univ. Padova, to appear. · Zbl 0882.35040
[21] Giorgi, E. De; Letta, G., Une notion générale de convergence faible pour des fonctions croissantes d’ensemble, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 4, 4, 61-99 (1977) · Zbl 0405.28008
[22] Evans, L. C.; Gariepy, R. F., Measure Theory and Fine Properties of Functions (1992), Boca Raton: CRC Press, Boca Raton · Zbl 0804.28001
[23] Hedberg, L. I.; Wolff, Th. H., Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble), 33, 161-187 (1983) · Zbl 0508.31008
[24] Heinonen, J.; KilpelÄinen, T.; Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations (1993), Oxford: Clarendon Press, Oxford · Zbl 0780.31001
[25] Lions, J. L., Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires (1969), Paris: Dunod, Gauthier-Villars, Paris · Zbl 0189.40603
[26] Maz’ya, V. G., Sobolev Spaces (1985), Berlin: Springer-Verlag, Berlin · Zbl 0692.46023
[27] Skrypnik, I. V., A quasilinear Dirichlet problem for a domain with fine-grained boundary, Dokl. Akad. Nauk Ukrain. SSR Ser. A, 2, 21-25 (1982) · Zbl 0485.35046
[28] Skrypnik, I. V., Nonlinear Elliptic Boundary Value Problems (1986), Leipzig: Teubner-Verlag, Leipzig · Zbl 0617.35001
[29] Skrypnik, I. V., Methods for Analysis of Nonlinear Elliptic Boundary Value Problems (1990), Moscow: Nauka, Moscow · Zbl 0743.35026
[30] Skrypnik, I. V., Averaging nonlinear Dirichlet problems in domains with channels, Soviet Math. Dokl., 42, 853-857 (1991) · Zbl 0757.35027
[31] Skrypnik, I. V., Asymptotic behaviour of solutions of nonlinear elliptic problems in perforated domains, Mat. Sb. (N.S.), 184, 67-90 (1993)
[32] Skrypnik, I. V., Homogenization of nonlinear Dirichlet problems in perforated domains of general structure, Mat. Sb. (N.S.), 187, 125-157 (1996) · Zbl 0874.35012
[33] Skrypnik, I. V., New conditions for the homogenization of nonlinear Dirichlet problems in perforated domains, Ukrain. Mat. Zh., 48, 675-694 (1996) · Zbl 0887.35015 · doi:10.1007/BF02384234
[34] Ziemer, W. P., Weakly Differentiable Functions (1989), Berlin: Springer-Verlag, Berlin · Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.