zbMATH — the first resource for mathematics

Spreading out muscle mass within a Hill-type model: a computer simulation study. (English) Zbl 1256.92011
Summary: It is state of the art that muscle contraction dynamics is adequately described by a hyperbolic relation between muscle force and contraction velocity (Hill relation), thereby neglecting muscle internal mass inertia (first-order dynamics). Accordingly, the vast majority of modelling approaches also neglect muscle internal inertia. Assuming that such first-order contraction dynamics yet interacts with muscle internal mass distribution, this study investigates two questions: (i) what is the time scale on which the muscle responds to a force step? (ii) How does this response scale with muscle design parameters? Thereto, we simulated accelerated contractions of alternating sequences of Hill-type contractile elements and point masses.
We found that in a typical small muscle the force levels off after about 0.2 ms, contraction velocity after about 0.5 ms. In an upscaled version representing bigger mammals’ muscles, the force levels off after about 20 ms, and the theoretically expected maximum contraction velocity is not reached. We conclude (i) that it may be indispensable to introduce second-order contributions into muscle models to understand high-frequency muscle responses, particularly in bigger muscles. Additionally, (ii) constructing more elaborate measuring devices seems to be worthwhile to distinguish viscoelastic and inertia properties in rapid contractile responses of muscles.

92C30 Physiology (general)
92C10 Biomechanics
68U20 Simulation (MSC2010)
Full Text: DOI
[1] A. V. Hill, “The heat of shortening and the dynamic constants of muscle,” Proceedings of the Royal Society of London B, vol. 126, no. 843, pp. 136-195, 1938. · doi:10.1098/rspb.1938.0050
[2] T. A. McMahon, Muscles, Reflexes, and Locomotion, Princeton University Press, Princeton, NJ, USA, 1984.
[3] D. M. Needham, Machina Carnis: The Biochemistry of Muscular Contraction in Its Historical Development, Cambridge University Press, Cambridge, Mass, USA, 1971.
[4] T. Kardel, “Niels Stensen’s geometrical theory of muscle contraction (1667): a reappraisal,” Journal of Biomechanics, vol. 23, no. 10, pp. 953-965, 1990. · doi:10.1016/0021-9290(90)90310-Y
[5] B. C. Abbott and D. R. Wilkie, “The relation between velocity of shortening and the tension-length curve of skeletal muscle,” The Journal of Physiology, vol. 120, no. 1-2, pp. 214-223, 1953.
[6] X. Aubert, Le couplage énergétique de la contraction musculaire [Thèse d’agrégation Université Catholique de Louvain], Université Catholique de Louvain, Editions Arscia, Brussels, Belgium, 1956.
[7] C. J. Barclay, J. K. Constable, and C. L. Gibbs, “Energetics of fast- and slow-twitch muscles of the mouse,” The Journal of Physiology, vol. 472, pp. 61-80, 1993.
[8] K. A. P. Edman, L. A. Mulieri, and B. Scubon Mulieri, “Non hyperbolic force velocity relationship in single muscle fibres,” Acta Physiologica Scandinavica, vol. 98, no. 2, pp. 143-156, 1976.
[9] K. A. P. Edman, “Double-hyperbolic force-velocity relation in frog muscle fibres,” The Journal of Physiology, vol. 404, pp. 301-321, 1988.
[10] G. C. Ettema and P. A. Huijing, “Isokinetic and isotonic force-velocity characteristics of rat EDL at muscle optimum length,” in Biomechanics XI-A, G. de Groot, A. P. Hollander, P. A. Huijing, and G. J. van Ingen Schenau, Eds., International Series on Biomechanics, pp. 58-62, Free University Press, Amsterdam, The Netherlands, 1988.
[11] W. O. Fenn and B. S. Marsh, “Muscular force at different speeds of shortening,” The Journal of Physiology, vol. 85, no. 3, pp. 277-297, 1935.
[12] C. Guschlbauer, H. Scharstein, and A. Büschges, “The extensor tibiae muscle of the stick insect: biomechanical properties of an insect walking leg muscle,” The Journal of Experimental Biology, vol. 210, no. 6, pp. 1092-1108, 2007. · doi:10.1242/jeb.02729
[13] B. R. Jewell and D. R. Wilkie, “An analysis of the mechanical components in frog’s striated muscle,” The Journal of Physiology, vol. 143, no. 3, pp. 515-540, 1958.
[14] B. Katz, “The relation between force and speed in muscular contraction,” The Journal of Physiology, vol. 96, no. 1, pp. 45-64, 1939.
[15] L. MacPherson, “A method of determining the force-velocity relation of muscle from two isometric contractions,” The Journal of Physiology, vol. 122, no. 1, pp. 172-177, 1953.
[16] T. Siebert, C. Rode, W. Herzog, O. Till, and R. Blickhan, “Nonlinearities make a difference: comparison of two common Hill-type models with real muscle,” Biological Cybernetics, vol. 98, no. 2, pp. 133-143, 2008. · Zbl 1149.92302 · doi:10.1007/s00422-007-0197-6
[17] O. Till, T. Siebert, C. Rode, and R. Blickhan, “Characterization of isovelocity extension of activated muscle: a Hill-type model for eccentric contractions and a method for parameter determination,” Journal of Theoretical Biology, vol. 255, no. 2, pp. 176-187, 2008. · Zbl 1400.92053 · doi:10.1016/j.jtbi.2008.08.009
[18] J. P. van Zandwijk, M. F. Bobbert, G. C. Baan, and P. A. Huijing, “From twitch to tetanus: performance of excitation dynamics optimized for a twitch in predicting tetanic muscle forces,” Biological Cybernetics, vol. 75, no. 5, pp. 409-417, 1996. · Zbl 0862.92011 · doi:10.1007/s004220050306
[19] R. C. Woledge, “The energetics of tortoise muscle,” The Journal of Physiology, vol. 197, no. 3, pp. 685-707, 1968.
[20] D. R. Wilkie, “The relation between force and velocity in human muscle,” The Journal of Physiology, vol. 110, no. 3-4, pp. 249-280, 1949.
[21] M. Günther, S. Schmitt, and V. Wank, “High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models,” Biological Cybernetics, vol. 97, no. 1, pp. 63-79, 2007. · Zbl 1125.92007 · doi:10.1007/s00422-007-0160-6
[22] T. Siebert, T. Weihmann, C. Rode, and R. Blickhan, “Cupiennius salei: biomechanical properties of the tibia-metatarsus joint and its flexing muscles,” Journal of Comparative Physiology B, vol. 180, no. 2, pp. 199-209, 2010. · doi:10.1007/s00360-009-0401-1
[23] A. F. Huxley and R. M. Simmons, “Proposed mechanism of force generation in striated muscle,” Nature, vol. 233, no. 5321, pp. 533-538, 1971. · doi:10.1038/233533a0
[24] T. Blangé, J. M. Karemaker, and A. E. J. L. Kramer, “Tension transients after quick release in rat and frog skeletal muscles,” Nature, vol. 237, no. 5353, pp. 281-283, 1972. · doi:10.1038/237281a0
[25] T. Blangé, J. M. Karemaker, and A. E. J. L. Kramer, “Elasticity as an expression of cross-bridge activity in rat muscle,” Pflügers Archiv European The Journal of Physiology, vol. 336, no. 4, pp. 277-288, 1972. · doi:10.1007/BF00586953
[26] L. E. Ford, A. F. Huxley, and R. M. Simmons, “The relation between stiffness and filament overlap in stimulated frog muscle fibres,” The Journal of Physiology, vol. 311, pp. 219-249, 1981.
[27] G. Piazzesi, L. Lucii, and V. Lombardi, “The size and the speed of the working stroke of muscle myosin and its dependence on the force,” The Journal of Physiology, vol. 545, no. 1, pp. 145-151, 2002. · doi:10.1113/jphysiol.2002.028969
[28] J. Denoth, E. Stüssi, G. Csucs, and G. Danuser, “Single muscle fiber contraction is dictated by inter-sarcomere dynamics,” Journal of Theoretical Biology, vol. 216, no. 1, pp. 101-122, 2002. · doi:10.1006/jtbi.2001.2519
[29] K. Nishiyama and H. Shimizu, “Dynamic analysis of the structure and function of sarcomeres,” Biochimica et Biophysica Acta, vol. 587, no. 4, pp. 540-555, 1979.
[30] H. Shimizu, T. Yamada, K. Nishiyama, and M. Yano, “The synergetic enzyme theory of muscular contraction: II. Relation between Hill’s equations and functions of two headed myosin,” Journal of Theoretical Biology, vol. 63, no. 1, pp. 165-189, 1976.
[31] G. Cecchi, P. J. Griffiths, and S. Taylor, “Stiffness and force in activated frog skeletal muscle fibers,” Biophysical Journal, vol. 49, no. 2, pp. 437-451, 1986.
[32] F. E. Nelson, A. M. Gabaldón, and T. J. Roberts, “Force-velocity properties of two avian hindlimb muscles,” Comparative Biochemistry and Physiology A, vol. 137, no. 4, pp. 711-721, 2004. · doi:10.1016/j.cbpb.2004.02.004
[33] M. Günther and H. Ruder, “Synthesis of two-dimensional human walking: a test of the \lambda -model,” Biological Cybernetics, vol. 89, no. 2, pp. 89-106, 2003. · Zbl 1084.92004 · doi:10.1007/s00422-003-0414-x
[34] U. Hahn, Entwicklung mehrgliedriger Modelle zur realistischen Simulation dynamischer Prozesse in biologischen Systemen [M.S. thesis], Eberhard-Karls-Universität, Tübingen, Germany, 1993.
[35] M. Krieg, Simulation und Steuerung biomechanischer Mehrkörpersysteme [M.S. thesis], Eberhard-Karls-Universität, Tübingen, Germany, 1992.
[36] L. F. Shampine and M. K. Gordon, Computer Solution of Ordinary Differential Equations: The Initial Value Problem, W. H. Freeman, San Francisco, Calif, USA, 1975. · Zbl 0347.65001
[37] M. G. Hoy, F. E. Zajac, and M. E. Gordon, “A musculoskeletal model of the human lower extremity: the effect of muscle, tendon, and moment arm on the moment-angle relationship of musculotendon actuators at the hip, knee, and ankle,” Journal of Biomechanics, vol. 23, no. 2, pp. 157-169, 1990. · doi:10.1016/0021-9290(90)90349-8
[38] J. C. Watson and A. M. Wilson, “Muscle architecture of biceps brachii, triceps brachii and supraspinatus in the horse,” Journal of Anatomy, vol. 210, no. 1, pp. 32-40, 2007. · doi:10.1111/j.1469-7580.2006.00669.x
[39] F. Mörl, T. Siebert, S. Schmitt, R. Blickhan, and M. Günther, “Electro-mechanical delay in Hill-type muscle models,” Journal of Mechanics in Medicine and Biology, vol. 12, no. 5, pp. 85-102, 2012. · doi:10.1142/S0219519412500856
[40] A. J. van Soest and M. F. Bobbert, “The contribution of muscle properties in the control of explosive movements,” Biological Cybernetics, vol. 69, no. 3, pp. 195-204, 1993. · doi:10.1007/BF00198959
[41] A. M. Gordon, A. F. Huxley, and F. J. Julian, “The variation in isometric tension with sarcomere length in vertebrate muscle fibres,” The Journal of Physiology, vol. 184, no. 1, pp. 170-192, 1966.
[42] F. J. Julian, “The effect of calcium on the force-velocity relation of briefly glycerinated frog muscle fibres,” The Journal of Physiology, vol. 218, no. 1, pp. 117-145, 1971.
[43] J. T. Stern, “Computer modelling of gross muscle dynamics,” Journal of Biomechanics, vol. 7, no. 5, pp. 411-428, 1974.
[44] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” The Journal of Physiology, vol. 117, no. 4, pp. 500-544, 1952.
[45] P. R. Shorten, P. O’Callaghan, J. B. Davidson, and T. K. Soboleva, “A mathematical model of fatigue in skeletal muscle force contraction,” Journal of Muscle Research and Cell Motility, vol. 28, no. 6, pp. 293-313, 2007. · doi:10.1007/s10974-007-9125-6
[46] S. S. Blemker, P. M. Pinsky, and S. L. Delp, “A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii,” Journal of Biomechanics, vol. 38, no. 4, pp. 657-665, 2005. · doi:10.1016/j.jbiomech.2004.04.009
[47] T. Johansson, P. Meier, and R. Blickhan, “A finite-element model for the mechanical analysis of skeletal muscles,” Journal of Theoretical Biology, vol. 206, no. 1, pp. 131-149, 2000. · doi:10.1006/jtbi.2000.2109
[48] R. R. Lemos, J. Rokne, G. V. G. Baranoski, Y. Kawakami, and T. Kurihara, “Modeling and simulating the deformation of human skeletal muscle based on anatomy and physiology,” Computer Animation and Virtual Worlds, vol. 16, no. 3-4, pp. 319-330, 2005. · Zbl 05132093 · doi:10.1002/cav.83
[49] C. W. J. Oomens, M. Maenhout, C. H. van Oijen, M. R. Drost, and F. P. Baaijens, “Finite element modelling of contracting skeletal muscle,” Philosophical Transactions of the Royal Society B, vol. 358, no. 1437, pp. 1453-1460, 2003. · doi:10.1098/rstb.2003.1345
[50] O. Röhrle and A. J. Pullan, “Three-dimensional finite element modelling of muscle forces during mastication,” Journal of Biomechanics, vol. 40, no. 15, pp. 3363-3372, 2007. · doi:10.1016/j.jbiomech.2007.05.011
[51] O. Röhrle, J. B. Davidson, and A. J. Pullan, “Bridging scales: a three-dimensional electromechanical finite element model of skeletal muscle,” SIAM Journal on Scientific Computing, vol. 30, no. 6, pp. 2882-2904, 2008. · Zbl 1175.74058 · doi:10.1137/070691504
[52] O. Röhrle, “Simulating the electro-mechanical behavior of skeletal muscles,” Computing in Science and Engineering, vol. 12, no. 6, Article ID 5432123, pp. 48-57, 2010. · doi:10.1109/MCSE.2010.30
[53] P. Meier and R. Blickhan, “FEM-simulation of skeletal muscle: the influence of inertia during activation and deactivation,” in Skeletal Muscle Mechanics: From Mechanisms to Function, chapter 12, pp. 207-223, John Wiley & Sons, Chichester, UK, 2000.
[54] J. Denoth, K. Gruber, M. Keppler, and H. Ruder, “Forces and torques during sport activities with high accelerations,” in Biomechanics: Current Interdisciplary Research, S. Perren and E. Schneider, Eds., pp. 663-668, Martinus Nijhoff, Amsterdam, The Netherlands, 1985.
[55] K. Gruber, H. Ruder, J. Denoth, and K. Schneider, “A comparative study of impact dynamics: wobbling mass model versus rigid body models,” Journal of Biomechanics, vol. 31, no. 5, pp. 439-444, 1998. · doi:10.1016/S0021-9290(98)00033-5
[56] M. Günther, V. A. Sholukha, D. Keßler, V. Wank, and R. Blickhan, “Dealing with skin motion and wobbling masses in inverse dynamics,” Journal of Mechanics in Medicine and Biology, vol. 3, no. 3-4, pp. 309-335, 2003. · doi:10.1142/S0219519403000831
[57] B. M. Nigg and W. Liu, “The effect of muscle stiffness and damping on simulated impact force peaks during running,” Journal of Biomechanics, vol. 32, no. 8, pp. 849-856, 1999. · doi:10.1016/S0021-9290(99)00048-2
[58] W. Liu and B. M. Nigg, “A mechanical model to determine the influence of masses and mass distribution on the impact force during running,” Journal of Biomechanics, vol. 33, no. 2, pp. 219-224, 2000. · doi:10.1016/S0021-9290(99)00151-7
[59] S. Schmitt and M. Günther, “Human leg impact: energy dissipation of wobbling masses,” Archive of Applied Mechanics, vol. 81, no. 7, pp. 887-897, 2011. · Zbl 1271.74323 · doi:10.1007/s00419-010-0458-z
[60] J. M. Wakeling and B. M. Nigg, “Soft-tissue vibrations in the quadriceps measured with skin mounted transducers,” Journal of Biomechanics, vol. 34, no. 4, pp. 539-543, 2001. · doi:10.1016/S0021-9290(00)00203-7
[61] A. F. Huxley, “Muscle structure and theories of contraction,” Progress in Biophysics and Biophysical Chemistry, vol. 7, pp. 255-318, 1957.
[62] A. F. Huxley, “A note suggesting that the cross bridge attachment during muscle contraction may take place in two stages,” Proceedings of the Royal Society of London B, vol. 183, no. 1070, pp. 83-86, 1973.
[63] A. V. Hill, “The effect of load on the heat of shortening of muscle,” Proceedings of the Royal Society of London B, vol. 159, pp. 297-318, 1964.
[64] M. M. Civan and R. J. Podolsky, “Contraction kinetics of striated muscle fibres following quick changes in load,” The Journal of Physiology, vol. 184, no. 3, pp. 511-534, 1966.
[65] M. Günther and S. Schmitt, “A macroscopic ansatz to deduce the Hill relation,” Journal of Theoretical Biology, vol. 263, no. 4, pp. 407-418, 2010. · doi:10.1016/j.jtbi.2009.12.027
[66] D. F. B. Haeufle, M. Günther, R. Blickhan, and S. Schmitt, “Proof of concept of an artificial muscle: theoretical model, numerical model and hardware experiment,” in Proceedings of the International IEEE Conference on Rehabilitation Robotics (ICORR), Zurich, Switzerland, July 2011. · doi:10.1109/ICORR.2011.5975336
[67] D. F. B. Haeufle, M. Günther, R. Blickhan, and S. Schmitt, “Proof of concept: model based bionic muscle with hyperbolic force-velocity relation,” Applied Bionics and Biomechanics, vol. 9, no. 3, pp. 267-274, 2012. · doi:10.3233/ABB-2011-0052
[68] T. Siebert, H. Wagner, and R. Blickhan, “Not all oscillations are rubbish: forward simulation of quick-release experiments,” Journal of Mechanics in Medicine and Biology, vol. 3, no. 1, pp. 107-122, 2003.
[69] T. Moritani, D. Stegeman, and R. Merletti, “Basic physiology and biophysics of EMG signal generation,” in Electromyography Physiology Engineering and Noninvasive Applications, R. Merletti and P. A. Parker, Eds., pp. 1-20, John Wiley & Sons, New York, NY, USA, 2004.
[70] A. M. Wilson, M. P. McGuigan, A. Su, and A. J. van den Bogert, “Horses damp the spring in their step,” Nature, vol. 414, no. 6866, pp. 895-899, 2001, Comment in Nature, vol. 414, no. 6866, pp. 855-857, 2001. · doi:10.1038/414895a
[71] K. A. Boyer and B. M. Nigg, “Muscle activity in the leg is tuned in response to impact force characteristics,” Journal of Biomechanics, vol. 37, no. 10, pp. 1583-1588, 2004. · doi:10.1016/j.jbiomech.2004.01.002
[72] K. A. Boyer and B. M. Nigg, “Soft tissue vibrations within one soft tissue compartment,” Journal of Biomechanics, vol. 39, no. 4, pp. 645-651, 2006. · doi:10.1016/j.jbiomech.2005.01.027
[73] D. Mealing, G. Long, and P. W. McCarthy, “Vibromyographic recording from human muscles with known fibre composition differences,” British Journal of Sports Medicine, vol. 30, no. 1, pp. 27-31, 1996.
[74] K. A. P. Edman and N. A. Curtin, “Synchronous oscillations of length and stiffness during loaded shortening of frog muscle fibres,” The Journal of Physiology, vol. 534, no. 2, pp. 553-563, 2001. · doi:10.1111/j.1469-7793.2001.t01-2-00553.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.