zbMATH — the first resource for mathematics

Existence and regularity for stationary incompressible flows with dissipative potentials of linear growth. (English) Zbl 1404.76011
Summary: We consider the slow flow of an incompressible fluid assuming in addition that the flow is also stationary. Our main assumption concerns the dissipative potential which is of linear growth with respect to the symmetric gradient of the velocity field. Thus our model can be seen as an approximation of the perfectly plastic case introduced by von Mises, and we will establish various results on existence and regularity of a solution.
76A05 Non-Newtonian fluids
76M30 Variational methods applied to problems in fluid mechanics
49Q20 Variational problems in a geometric measure-theoretic setting
49N60 Regularity of solutions in optimal control
Full Text: DOI
[1] Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Second English Edition, Revised and Enlarged. Translated from the Russian by Richard A. Silverman and John Chu. Mathematics and its Applications, vol. 2. Gordon and Breach, Science Publishers, New York, London, Paris (1969)
[2] Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearized Steady Problems, Volume 38 of Springer Tracts in Natural Philosophy. Springer, New York (1994) · Zbl 0949.35004
[3] Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems, Volume 39 of Springer Tracts in Natural Philosophy. Springer, New York (1994) · Zbl 0949.35004
[4] von Mises, R.: Mechanik der festen Körper im plastisch- deformablen Zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, pp. 582-592 (1913) · JFM 44.0918.06
[5] Hohenemser, K.; Prager, W., Über die Ansätze der Mechanik isotroper Kontinua, ZAMM J. Appl. Math. Mech. Zeitschrift für Angewandte Mathematik und Mechanik, 12, 216-226, (1932) · Zbl 0005.08501
[6] Prager, W.: Einführung in die Kontinuumsmechanik. Lehr- und Handbücher der Ingenieurwissenschaften, Bd. 20. Birkhäuser Verlag, Basel-Stuttgart (1961)
[7] Fuchs, M.; Seregin, G., Variational methods for fluids of Prandtl-Eyring type and plastic materials with logarithmic hardening, Math. Methods Appl. Sci., 22, 317-351, (1999) · Zbl 0928.76087
[8] Fuchs, M., Seregin, G.: Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids, Volume 1749 of Lecture Notes in Mathematics. Springer, Berlin (2000) · Zbl 0964.76003
[9] Breit, D.; Diening, L.; Fuchs, M., Solenoidal Lipschitz truncation and applications in fluid mechanics, J. Differ. Equ., 253, 1910-1942, (2012) · Zbl 1245.35080
[10] Frehse, J.; Málek, J.; Steinhauer, M., On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method, SIAM J. Math. Anal., 34, 1064-1083, (2003) · Zbl 1050.35080
[11] Kaplický, P., Málek, J., Stará, J.: \(C^{1,\alpha }\)-solutions to a class of nonlinear fluids in two dimensions—stationary Dirichlet problem. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 259(Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 30):89-121, 297 (1999)
[12] Wolf, J., Interior \(C^{1,\alpha }\)-regularity of weak solutions to the equations of stationary motions of certain non-Newtonian fluids in two dimensions, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 10, 317-340, (2007) · Zbl 1140.76007
[13] Bildhauer, M.; Fuchs, M., Variants of the Stokes problem: the case of anisotropic potentials, J. Math. Fluid Mech., 5, 364-402, (2003) · Zbl 1072.76019
[14] Apushkinskaya, D.; Bildhauer, M.; Fuchs, M., Steady states of anisotropic generalized Newtonian fluids, J. Math. Fluid Mech., 7, 261-297, (2005) · Zbl 1162.76375
[15] Bildhauer, M.; Fuchs, M.; Zhong, X., On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids, Algebra i Analiz, 18, 1-23, (2006)
[16] Fuchs, M., A note on non-uniformly elliptic Stokes-type systems in two variables, J. Math. Fluid Mech., 12, 266-279, (2010) · Zbl 1195.76148
[17] Breit, D.; Fuchs, M., The nonlinear Stokes problem with general potentials having superquadratic growth, J. Math. Fluid Mech., 13, 371-385, (2011) · Zbl 1270.35335
[18] Fuchs, M., Stationary flows of shear thickening fluids in 2\(D\), J. Math. Fluid Mech., 14, 43-54, (2012) · Zbl 1294.35097
[19] Temam, R.: Problèmes mathématiques en plasticité, volume 12 of Méthodes Mathématiques de l’Informatique [Mathematical Methods of Information Science]. Gauthier-Villars, Montrouge, 1983. Engl. transl.: Mathematical problems in plasticity. Bordas; Paris (1985)
[20] Bildhauer, M., Naumann, J., Wolf, J.: An approximation theorem for vector fields in \(\text{BD}_{\rm div}\). Technical Report No. 311, Department of Mathematics, Saarland University. http://www.math.uni-sb.de/service/preprints/preprint311.pdf (2012)
[21] Anzellotti, G.; Giaquinta, M., Existence of the displacements field for an elasto-plastic body subject to Hencky’s law and von Mises yield condition, Manuscr. Math., 32, 101-136, (1980) · Zbl 0465.73022
[22] Fuchs, M.; Müller, J.; Tietz, C., Signal recovery via TV-type energies, Algebra i Analiz, 29, 159-195, (2017) · Zbl 1392.49003
[23] Adams, R.A.: Sobolev Spaces, volume 65 of Pure and Applied Mathematics. Academic Press, New-York, London (1975)
[24] Mosolov, P.P., Mjasnikov, V.P.: On well-posedness of boundary value problems in the mechanics of continuous media. Mat. Sbornik. 88(130), 256-284 (1972). Engl. translation in Math. USSR Sbornik 17(2), 257-268 (1972)
[25] Ionescu, I.R., Sofonea, M.: Functional and numerical methods in viscoplasticity. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1993) · Zbl 0787.73005
[26] Fuchs, M., On stationary incompressible Norton fluids and some extensions of Korn’s inequality, J. Anal. Appl. Z.A.A., 13, 191-197, (1994) · Zbl 0812.76007
[27] Korn, A.: Über die Eigenschwingungen eines elastischen Körpers mit ruhender Oberfläche. Akad. Wiss. München, Math.-Phys. Kl., Ber. 36, pp. 351-401 (1906)
[28] Korn, A.: Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingunen eine Rolle spielen. Bull. ist. Cracovie Akad. umiejet, Classe sci. math. nat., pp. 705-724 (1909) · JFM 40.0884.02
[29] Fichera, Gaetano, Existence Theorems in Elasticity, 347-389, (1973), Berlin, Heidelberg
[30] Strauss, M.J.: Variations of Korn’s and Sobolev’s equalities. In: Partial differential equations (Proceedings of Symposia in Pure Mathematics, vol. 23. University of California, Berkeley, 1971), pp. 207-214 (1973)
[31] Zeidler, Eberhard, Statistical Physics, 396-421, (1988), New York, NY · Zbl 0648.47036
[32] Suquet, P-M, Sur une nouveau cadre fonctionnel pour les équations de la plasticité, C. R. Acad. Sc. Paris (A), 286, 1129-1132, (1978) · Zbl 0378.35056
[33] Suquet, P-M, Un espace fonctionnel pour les équations de la plasticité, Ann. Fac. Sci. Toulouse Math. (5), 1, 77-87, (1979) · Zbl 0405.46027
[34] Temam, Roger; Strang, Gilbert, Functions of bounded deformation, Archive for Rational Mechanics and Analysis, 75, 7-21, (1980) · Zbl 0472.73031
[35] Fuchs, M., Computable upper bounds for the constants in Poincaré-type inequalities for fields of bounded deformation, Math. Methods Appl. Sci., 34, 1920-1932, (2011) · Zbl 1403.74017
[36] Barroso, A.; Fonseca, I.; Toader, R., A relaxation theorem in the space of functions of bounded deformation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29, 19-49, (2000) · Zbl 0960.49014
[37] Demengel, F.; Temam, R., Convex functions of a measure and applications, Indiana Univ. Math. J., 33, 673-709, (1984) · Zbl 0581.46036
[38] Arroyo-Rabasa, A., Relaxation and optimization for linear-growth convex integral functionals under PDE constraints, J. Funct. Anal., 273, 2388-2427, (2017) · Zbl 1375.49014
[39] Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford (2000) · Zbl 0957.49001
[40] Dacorogna, B.: Direct Methods in the Calculus of Variations. Applied Mathematical Sciences. Springer, New York (2007)
[41] Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies. Princeton University Press, Princeton (1983) · Zbl 0516.49003
[42] Fuchs, M.; Seregin, G., Regularity results for the quasi-static Bingham variational inequality in dimensions two and three, Math. Z., 227, 525-541, (1998) · Zbl 0899.76044
[43] Anzelotti, G.; Giaquinta, M., Convex functionals and partial regularity, Arch. Ration. Mech. Anal., 102, 243-272, (1988) · Zbl 0658.49005
[44] Fuchs, M.; Seregin, G., Variational methods for fluids of Prandtl-Eyring type and plastic materials with logarithmic hardening, Math. Methods Appl. Sci., 22, 317-351, (1999) · Zbl 0928.76087
[45] Ladyzhenskaya, OA; Solonnikov, VA, Some problems of vector analysis and generalized formulations of boundary-value problems for the Navier-Stokes equations, J. Sov. Math., 10, 257-286, (1978) · Zbl 0388.35061
[46] Fuchs, Martin; Müller, Jan, A higher order TV-type variational problem related to the denoising and inpainting of images, Nonlinear Analysis: Theory, Methods & Applications, 154, 122-147, (2017) · Zbl 1358.49043
[47] Fuchs, M.; Müller, J., A remark on the denoising of greyscale images using energy densities with varying growth rates, J. Math. Sci., 228, 705-722, (2018) · Zbl 1398.49032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.