×

Orthogonal nilpotent superfields from linear models. (English) Zbl 1388.83833

Summary: We derive supersymmetry/supergravity models with constrained orthogonal nilpotent superfields from the linear models in the formal limit where the masses of the sgoldstino, inflatino and sinflaton tend to infinity. The case where the sinflaton mass remains finite leads to a model with a ‘relaxed’ constraint, where the sinflaton remains an independent field. Our procedure is equivalent to a requirement that some of the components of the curvature of the moduli space tend to infinity.

MSC:

83E50 Supergravity
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] S. Ferrara, R. Kallosh and J. Thaler, Cosmology with orthogonal nilpotent superfields, Phys. Rev.D 93 (2016) 043516 [arXiv:1512.00545] [INSPIRE].
[2] J.J.M. Carrasco, R. Kallosh and A. Linde, Minimal supergravity inflation, Phys. Rev.D 93 (2016) 061301 [arXiv:1512.00546] [INSPIRE].
[3] R. Kallosh, A. Karlsson and D. Murli, From linear to nonlinear supersymmetry via functional integration, Phys. Rev.D 93 (2016) 025012 [arXiv:1511.07547] [INSPIRE].
[4] D.V. Volkov and V.P. Akulov, Possible universal neutrino interaction, JETP Lett.16 (1972) 438 [Pisma Zh. Eksp. Teor. Fiz.16 (1972) 621] [INSPIRE]. · Zbl 0983.81112
[5] D. Volkov and V. Akulov, Is the neutrino a Goldstone particle?, Phys. Lett.B 46 (1973) 109. · doi:10.1016/0370-2693(73)90490-5
[6] M. Roček, Linearizing the Volkov-Akulov model, Phys. Rev. Lett.41 (1978) 451. · doi:10.1103/PhysRevLett.41.451
[7] E.A. Ivanov and A.A. Kapustnikov, General relationship between linear and nonlinear realizations of supersymmetry, J. Phys.A 11 (1978) 2375.
[8] U. Lindström and M. Roček, Constrained local superfields, Phys. Rev.D 19 (1979) 2300.
[9] S. Samuel and J. Wess, A superfield formulation of the nonlinear realization of supersymmetry and its coupling to supergravity, Nucl. Phys.B 221 (1983) 153. · doi:10.1016/0550-3213(83)90622-3
[10] R. Casalbuoni et al., Non-linear realization of supersymmetry algebra from supersymmetric constraint, Phys. Lett.B 220 (1989) 569. · doi:10.1016/0370-2693(89)90788-0
[11] M.S. Kuzenko and J.S. Tyler, Complex linear superfield as a model for Goldstino, JHEP04 (2011) 057 [arXiv:1102.3042] [INSPIRE]. · Zbl 1390.83410 · doi:10.1007/JHEP04(2011)057
[12] Z. Komargodski and N. Seiberg, From linear SUSY to constrained superfields, JHEP09 (2009) 066 [arXiv:0907.2441] [INSPIRE]. · doi:10.1088/1126-6708/2009/09/066
[13] E. Dudas, G. von Gersdorff, D.M. Ghilencea, S. Lavignac and J. Parmentier, On non-universal Goldstino couplings to matter, Nucl. Phys.B 855 (2012) 570 [arXiv:1106.5792] [INSPIRE]. · Zbl 1229.81328 · doi:10.1016/j.nuclphysb.2011.10.011
[14] S.M. Kuzenko and S.J. Tyler, Relating the Komargodski-Seiberg and Akulov-Volkov actions: exact nonlinear field redefinition, Phys. Lett.B 698 (2011) 319 [arXiv:1009.3298] [INSPIRE]. · doi:10.1016/j.physletb.2011.03.020
[15] I. Antoniadis, E. Dudas, S. Ferrara and A. Sagnotti, The Volkov-Akulov-Starobinsky supergravity, Phys. Lett.B 733 (2014) 32 [arXiv:1403.3269] [INSPIRE]. · Zbl 1370.83099 · doi:10.1016/j.physletb.2014.04.015
[16] E. Dudas, S. Ferrara, A. Kehagias and A. Sagnotti, Properties of nilpotent supergravity, JHEP09 (2015) 217 [arXiv:1507.07842] [INSPIRE]. · Zbl 1388.83793 · doi:10.1007/JHEP09(2015)217
[17] S.M. Kuzenko and S.J. Tyler, On the Goldstino actions and their symmetries, JHEP05 (2011) 055 [arXiv:1102.3043] [INSPIRE]. · Zbl 1296.81049 · doi:10.1007/JHEP05(2011)055
[18] S. Ferrara, R. Kallosh and A. Linde, Cosmology with nilpotent superfields, JHEP10 (2014) 143 [arXiv:1408.4096] [INSPIRE]. · Zbl 1333.83268 · doi:10.1007/JHEP10(2014)143
[19] Y. Kahn, D.A. Roberts and J. Thaler, The goldstone and goldstino of supersymmetric inflation, JHEP10 (2015) 001 [arXiv:1504.05958] [INSPIRE]. · Zbl 1388.83925 · doi:10.1007/JHEP10(2015)001
[20] G. Dall’Agata and F. Farakos, Constrained superfields in supergravity, JHEP02 (2016) 101 [arXiv:1512.02158] [INSPIRE]. · Zbl 1388.83783 · doi:10.1007/JHEP02(2016)101
[21] S. Ferrara, R. Kallosh, A. Van Proeyen and T. Wrase, Linear versus non-linear supersymmetry, in general, JHEP04 (2016) 065 [arXiv:1603.02653] [INSPIRE]. · Zbl 1388.81038 · doi:10.1007/JHEP04(2016)065
[22] T. Kugo and S. Uehara, N = 1 superconformal tensor calculus: multiplets with external Lorentz indices and spinor derivative operators, Prog. Theor. Phys.73 (1985) 235. · Zbl 0979.83532 · doi:10.1143/PTP.73.235
[23] D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge U.K. (2012). · Zbl 1245.83001 · doi:10.1017/CBO9781139026833
[24] B.C. Allanach and F. Quevedo, Supersymmetry, http://www.damtp.cam.ac.uk/user/examples/3P7.pdf.
[25] R. Kallosh, A. Linde and T. Rube, General inflaton potentials in supergravity, Phys. Rev.D 83 (2011) 043507 [arXiv:1011.5945] [INSPIRE].
[26] M. Gomez-Reino and C.A. Scrucca, Locally stable non-supersymmetric Minkowski vacua in supergravity, JHEP05 (2006) 015 [hep-th/0602246] [INSPIRE]. · doi:10.1088/1126-6708/2006/05/015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.