×

zbMATH — the first resource for mathematics

Wilson lines and UV sensitivity in magnetic compactifications. (English) Zbl 1380.81400
Summary: We investigate the ultraviolet (UV) behaviour of 6D \(N=1\) supersymmetric effective (Abelian) gauge theories compactified on a two-torus (\(T_2\)) with magnetic flux. To this purpose we compute offshell the one-loop correction to the Wilson line state self-energy. The offshell calculation is actually necessary to capture the usual effective field theory expansion in powers of (\( \partial / \Lambda\)). Particular care is paid to the regularization of the (divergent) momentum integrals, which is relevant for identifying the corresponding counterterm(s). We find a counterterm which is a new higher dimensional effective operator of dimension \(d=6\), that is enhanced for a larger compactification area (where the effective theory applies) and is consistent with the symmetries of the theory. Its consequences are briefly discussed and comparison is made with orbifold compactifications without flux.

MSC:
81T60 Supersymmetric field theories in quantum mechanics
83E30 String and superstring theories in gravitational theory
PDF BibTeX Cite
Full Text: DOI
References:
[1] Berkooz, M.; Douglas, MR; Leigh, RG, Branes intersecting at angles, Nucl. Phys., B 480, 265, (1996) · Zbl 0925.81211
[2] Angelantonj, C.; Antoniadis, I.; Dudas, E.; Sagnotti, A., Type I strings on magnetized orbifolds and brane transmutation, Phys. Lett., B 489, 223, (2000) · Zbl 1031.81579
[3] Blumenhagen, R.; Görlich, L.; Körs, B.; Lüst, D., Noncommutative compactifications of type-I strings on tori with magnetic background flux, JHEP, 10, 006, (2000) · Zbl 0965.81113
[4] Anastasopoulos, P.; Antoniadis, I.; Benakli, K.; Goodsell, MD; Vichi, A., One-loop adjoint masses for non-supersymmetric intersecting branes, JHEP, 08, 120, (2011) · Zbl 1298.81230
[5] G. Aldazabal, S. Franco, L.E. Ibáñez, R. Rabadán and A.M. Uranga, Intersecting brane worlds, JHEP02 (2001) 047 [hep-ph/0011132] [INSPIRE].
[6] Cremades, D.; Ibáñez, LE; Marchesano, F., Computing Yukawa couplings from magnetized extra dimensions, JHEP, 05, 079, (2004)
[7] Blumenhagen, R.; Körs, B.; Lüst, D.; Stieberger, S., Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept., 445, 1, (2007)
[8] Angelantonj, C.; Sagnotti, A., Open strings, Phys. Rept., 371, 1, (2002) · Zbl 0999.83056
[9] C. Bachas, A way to break supersymmetry, hep-th/9503030 [INSPIRE].
[10] Buchmüller, W.; Dierigl, M.; Dudas, E.; Schweizer, J., Effective field theory for magnetic compactifications, JHEP, 04, 052, (2017) · Zbl 1378.83081
[11] M. Ishida, K. Nishiwaki and Y. Tatsuta, Brane-localized masses in magnetic compactifications, arXiv:1702.08226 [INSPIRE].
[12] Hamada, Y.; Kobayashi, T., Massive modes in magnetized brane models, Prog. Theor. Phys., 128, 903, (2012)
[13] Al-Hashimi, MH; Wiese, UJ, Discrete accidental symmetry for a particle in a constant magnetic field on a torus, Annals Phys., 324, 343, (2009) · Zbl 1159.81044
[14] Buchmüller, W.; Dierigl, M.; Ruehle, F.; Schweizer, J., De Sitter vacua and supersymmetry breaking in six-dimensional flux compactifications, Phys. Rev., D 94, 025025, (2016)
[15] L.D. Landau and E.M. Lifshitz, Quantum mechanics (Non-relativistic theory), third Edition, Betterworth-Heiniemann, U.S.A. (1977).
[16] Buchmüller, W.; Schweizer, J., Flavor mixings in flux compactifications, Phys. Rev., D 95, 075024, (2017)
[17] Abe, T-H; Fujimoto, Y.; Kobayashi, T.; Miura, T.; Nishiwaki, K.; Sakamoto, M., Z_{N} twisted orbifold models with magnetic flux, JHEP, 01, 065, (2014)
[18] Abe, T-h; Fujimoto, Y.; Kobayashi, T.; Miura, T.; Nishiwaki, K.; Sakamoto, M., Operator analysis of physical states on magnetized T \^{}{2}/Z_{N} orbifolds, Nucl. Phys., B 890, 442, (2014) · Zbl 1326.81255
[19] Abe, T-h; Fujimoto, Y.; Kobayashi, T.; Miura, T.; Nishiwaki, K.; Sakamoto, M.; etal., Classification of three-generation models on magnetized orbifolds, Nucl. Phys., B 894, 374, (2015) · Zbl 1328.81219
[20] Fujimoto, Y.; Kobayashi, T.; Nishiwaki, K.; Sakamoto, M.; Tatsuta, Y., Comprehensive analysis of Yukawa hierarchies on T \^{}{2}/Z_{N} with magnetic fluxes, Phys. Rev., D 94, 035031, (2016)
[21] Kobayashi, T.; Nishiwaki, K.; Tatsuta, Y., CP-violating phase on magnetized toroidal orbifolds, JHEP, 04, 080, (2017)
[22] Buchmüller, W.; Dierigl, M.; Ruehle, F.; Schweizer, J., Split symmetries, Phys. Lett., B 750, 615, (2015) · Zbl 1364.83058
[23] Abe, H.; Kobayashi, T.; Sumita, K.; Tatsuta, Y., Supersymmetric models on magnetized orbifolds with flux-induced Fayet-Iliopoulos terms, Phys. Rev., D 95, 015005, (2017)
[24] Fujimoto, Y.; Kobayashi, T.; Miura, T.; Nishiwaki, K.; Sakamoto, M., Shifted orbifold models with magnetic flux, Phys. Rev., D 87, 086001, (2013)
[25] D.M. Ghilencea, Higher derivative operators as loop counterterms in one-dimensional field theory orbifolds, JHEP03 (2005) 009 [hep-ph/0409214] [INSPIRE].
[26] D.M. Ghilencea and H.M. Lee, Higher derivative operators from transmission of supersymmetry breaking on S\^{}{1}/Z_{2}, JHEP09 (2005) 024 [hep-ph/0505187] [INSPIRE].
[27] D.M. Ghilencea and H.M. Lee, Higher derivative operators from Scherk-Schwarz supersymmetry breaking on T\^{}{2}/Z_{2}, JHEP12 (2005) 039 [hep-ph/0508221] [INSPIRE].
[28] Groot Nibbelink, S.; Hillenbach, M., Quantum corrections to non-abelian SUSY theories on orbifolds, Nucl. Phys., B 748, 60, (2006) · Zbl 1186.81093
[29] Groot Nibbelink, S.; Hillenbach, M., Renormalization of supersymmetric gauge theories on orbifolds: brane gauge couplings and higher derivative operators, Phys. Lett., B 616, 125, (2005) · Zbl 1247.81303
[30] D.M. Ghilencea, H.M. Lee and K. Schmidt-Hoberg, Higher derivatives and brane-localised kinetic terms in gauge theories on orbifolds, JHEP08 (2006) 009 [hep-ph/0604215] [INSPIRE].
[31] D.M. Ghilencea, Compact dimensions and their radiative mixing, Phys. Rev.D 70 (2004) 045018 [hep-ph/0311264] [INSPIRE].
[32] Georgi, H., Effective field theory, Ann. Rev. Nucl. Part. Sci., 43, 209, (1993)
[33] Marcus, N.; Sagnotti, A.; Siegel, W., Ten-dimensional supersymmetric Yang-Mills theory in terms of four-dimensional superfields, Nucl. Phys., B 224, 159, (1983)
[34] Arkani-Hamed, N.; Gregoire, T.; Wacker, JG, Higher dimensional supersymmetry in 4−D superspace, JHEP, 03, 055, (2002)
[35] E. Elizalde, Ten physical applications of spectral zeta functions, second edition, Berlin, Springer, Germany (2012). · Zbl 1250.81004
[36] I. Gradshteyn and I. Ryzhik, Table of integrals, series and products, 7\^{}{th} edition, Academic Press, U.S.A. (2007). · Zbl 1208.65001
[37] Antoniadis, I.; Dudas, E.; Ghilencea, DM, Living with ghosts and their radiative corrections, Nucl. Phys., B 767, 29, (2007) · Zbl 1117.81339
[38] Antoniadis, I.; Dudas, E.; Ghilencea, DM, Supersymmetric models with higher dimensional operators, JHEP, 03, 045, (2008)
[39] Dudas, E.; Ghilencea, DM, Effective operators in SUSY, superfield constraints and searches for a UV completion, JHEP, 06, 124, (2015) · Zbl 1388.81146
[40] Ghilencea, DM; Hoover, D.; Burgess, CP; Quevedo, F., Casimir energies for 6D supergravities compactified on T \^{}{2}/Z(N) with Wilson lines, JHEP, 09, 050, (2005)
[41] E. Onofri, Landau levels on a torus, Int. J. Theor. Phys.40 (2001) 537 [quant-ph/0007055] [INSPIRE]. · Zbl 0984.81200
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.