×

Cumulant expansions for atmospheric flows. (English) Zbl 1456.86005

Summary: Atmospheric flows are governed by the equations of fluid dynamics. These equations are nonlinear, and consequently the hierarchy of cumulant equations is not closed. But because atmospheric flows are inhomogeneous and anisotropic, the nonlinearity may manifest itself only weakly through interactions of nontrivial mean fields with disturbances such as thermals or eddies. In such situations, truncations of the hierarchy of cumulant equations hold promise as a closure strategy. Here we show how truncations at second order can be used to model and elucidate the dynamics of turbulent atmospheric flows. Two examples are considered. First, we study the growth of a dry convective boundary layer, which is heated from below, leading to turbulent upward energy transport and growth of the boundary layer. We demonstrate that a quasilinear truncation of the equations of motion, in which interactions of disturbances among each other are neglected but interactions with mean fields are taken into account, can capture the growth of the convective boundary layer. However, it does not capture important turbulent transport terms in the turbulence kinetic energy budget. Second, we study the evolution of two-dimensional large-scale waves, which are representative of waves seen in Earth’s upper atmosphere. We demonstrate that a cumulant expansion truncated at second order (CE2) can capture the evolution of such waves and their nonlinear interaction with the mean flow in some circumstances, for example, when the wave amplitude is small enough or the planetary rotation rate is large enough. However, CE2 fails to capture the flow evolution when strongly nonlinear eddy-eddy interactions that generate small-scale filaments in surf zones around critical layers become important. Higher-order closures can capture these missing interactions. The results point to new ways in which the dynamics of turbulent boundary layers may be represented in climate models, and they illustrate different classes of nonlinear processes that can control wave dissipation and angular momentum fluxes in the upper troposphere.

MSC:

86A10 Meteorology and atmospheric physics
76F40 Turbulent boundary layers
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ait-Chaalal F and Schneider T 2015 Why eddy momentum fluxes are concentrated in the upper troposphere J. Atmos. Sci.72 1585-604 · doi:10.1175/JAS-D-14-0243.1
[2] Arakawa A and Schubert W H 1974 Interaction of a cumulus cloud ensemble with the large-scale environment: I J. Atmos. Sci.31 674-701 · doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2
[3] Bakas N A and Ioannou P J 2007 Momentum and energy transport by gravity waves in stochastically driven stratified flows: I. Radiation of gravity waves from a shear layer J. Atmos. Sci.64 1509-29 · doi:10.1175/JAS3905.1
[4] Bakas N A and Ioannou P J 2013 Emergence of large scale structure in barotropic β-plane turbulence Phys. Rev. Lett.110 224501 · doi:10.1103/PhysRevLett.110.224501
[5] Bakas N A and Ioannou P J 2014 A theory for the emergence of coherent structures in beta-plane turbulence J. Fluid Mech.740 312-41 · doi:10.1017/jfm.2013.663
[6] Beljaars A 1992 The parametrization of the planetary boundary layer (Meteorological Training Course Lecture Series)
[7] Boer G and Shepherd T 1983 Large-scale two-dimensional turbulence in the atmosphere J. Atmos. Sci.40 164-84 · doi:10.1175/1520-0469(1983)040<0164:LSTDTI>2.0.CO;2
[8] Bony S et al 2006 How well do we understand and evaluate climate change feedback processes? J. Clim.19 3445-82 · doi:10.1175/JCLI3819.1
[9] Bouchet F, Nardini C and Tangarife T 2013 Kinetic theory of jet dynamics in the stochastic barotropic and 2d Navier-Stokes equations J. Stat. Phys.153 572-625 · Zbl 1292.82031 · doi:10.1007/s10955-013-0828-3
[10] Boussinesq J 1872 Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond J. Math. Pures Appl. 55-108
[11] Brient F, Schneider T, Tan Z, Bony S, Qu X and Hall A 2015 Shallowness of tropical low clouds as a predictor of climate models’ response to warming Clim. Dyn. · doi:10.1007/s00382-015-2846-0
[12] Busse F H 1978 Non-linear properties of thermal convection Rep. Prog. Phys.41 1930-67 · doi:10.1088/0034-4885/41/12/003
[13] Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (New York: Dover) · Zbl 0142.44103
[14] Clark T and Spitz P 1995 Two-point correlation equations for variable density turbulence Technical Report Los Alamos National Lab., NM USA
[15] Constantinou N C, Farrell B F and Ioannou P J 2014a Emergence and equilibration of jets in beta-plane turbulence: applications of stochastic structural stability theory J. Atmos. Sci.71 1818-42 · doi:10.1175/JAS-D-13-076.1
[16] Constantinou N C, Lozano-Durán A, Nikolaidis M-A, Farrell B F, Ioannou P J and Jiménez J 2014b Turbulence in the highly restricted dynamics of a closure at second order: comparison with DNS J. Phys. Conf. Ser.506 012004 · doi:10.1088/1742-6596/506/1/012004
[17] de Roode S R, Jonker H J J, Duynkerke P G and Stevens B 2004 Countergradient fluxes of conserved variables in the clear convective and stratocumulus-topped boundary layer: the role of the entrainment flux Bound.-Layer Meteor.112 179-96 · doi:10.1023/B:BOUN.0000020167.25780.16
[18] DelSole T 2001 A simple model for transient eddy momentum fluxes in the upper troposphere J. Atmos. Sci.58 3019-35 · doi:10.1175/1520-0469(2001)058<3019:ASMFTE>2.0.CO;2
[19] Edmon H Jr, Hoskins B J and McIntyre M E 1980 Eliassen-Palm cross sections for the troposphere J. Atmos. Sci.37 2600-16 · doi:10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2
[20] Farrell B 1987 Developing disturbances in shear J. Atmos. Sci.44 2191-9 · doi:10.1175/1520-0469(1987)044<2191:DDIS>2.0.CO;2
[21] Farrell B F and Ioannou P J 1993 Stochastic dynamics of baroclinic waves J. Atmos. Sci.50 4044-57 · doi:10.1175/1520-0469(1993)050<4044:SDOBW>2.0.CO;2
[22] Farrell B F and Ioannou P J 2003 Structural stability of turbulent jets J. Atmos. Sci.60 2101-18 · doi:10.1175/1520-0469(2003)060<2101:SSOTJ>2.0.CO;2
[23] Farrell B F and Ioannou P J 2007 Structure and spacing of jets in barotropic turbulence J. Atmos. Sci.64 3652-65 · doi:10.1175/JAS4016.1
[24] Firl G J and Randall D A 2015 Fitting and analyzing LES using multiple trivariate gaussians J. Atmos. Sci.72 1094-116 · doi:10.1175/JAS-D-14-0192.1
[25] Frisch U 1995 Turbulence: the Legacy of A.N. Kolmogorov (Cambridge: Cambridge University Press) · Zbl 0832.76001 · doi:10.1017/CBO9781139170666
[26] Garratt J R 1994 The Atmospheric Boundary Layer (Cambridge: Cambridge University Press)
[27] Gregory D 1997 Sensitivity of general circulation model performance to convective parametrization (Meteorological Training Course Lecture Series)
[28] Haynes P H and McIntyre M E 1987 On the representation of Rossby wave critical layers and wave breaking in zonally truncated models J. Atmos. Sci.44 2359-82 · doi:10.1175/1520-0469(1987)044<2359:OTRORW>2.0.CO;2
[29] Heikes R and Randall D A 1995a Numerical integration of the shallow-water equations on a twisted icosahedral grid: I. Basic design and results of tests Mon. Weather Rev.123 1862-80 · doi:10.1175/1520-0493(1995)123<1862:NIOTSW>2.0.CO;2
[30] Heikes R and Randall D A 1995b Numerical integration of the shallow-water equations on a twisted icosahedral grid: II. A detailed description of the grid and an analysis of numerical accuracy Mon. Weather Rev.123 1881-7 · doi:10.1175/1520-0493(1995)123<1881:NIOTSW>2.0.CO;2
[31] Heinze R, Mironov D and Raasch S 2015 Second-moment budgets in cloud topped boundary layers: a large-eddy simulation study J. Adv. Model. Earth Syst.7 510-36 · doi:10.1002/2014MS000376
[32] Held I M 1975 Momentum transport by quasi-geostrophic eddies J. Atmos. Sci.32 1494-7 · doi:10.1175/1520-0469(1975)032<1494:MTBQGE>2.0.CO;2
[33] Held I M 1999 The macroturbulence of the troposphere Tellus B 51 59-70 · doi:10.3402/tellusb.v51i1.16260
[34] Held I M and Hoskins B J 1985 Large-scale eddies and the general circulation of the troposphere Adv. Geophys.28 3-1 · doi:10.1016/S0065-2687(08)60218-6
[35] Held I M and Phillips P J 1987 Linear and nonlinear barotropic decay on the sphere J. Atmos. Sci.44 200-7 · doi:10.1175/1520-0469(1987)044<0200:LANBDO>2.0.CO;2
[36] Herring J R 1963 Investigation of problems in thermal convection J. Atmos. Sci.20 325-38 · doi:10.1175/1520-0469(1963)020<0325:IOPITC>2.0.CO;2
[37] Killworth P R D and McIntyre M E 1985 Do Rossby-wave critical layers absorb, reflect, or over-reflect? J. Fluid Mech.161 449-92 · Zbl 0676.76040 · doi:10.1017/S0022112085003019
[38] Klein R 2010 Scale-dependent models for atmospheric flows Annu. Rev. Fluid Mech.42 249-74 · Zbl 1213.86002 · doi:10.1146/annurev-fluid-121108-145537
[39] Kuo H-L 1951 Vorticity transfer as related to the development of the general circulation J. Meteorol.8 307-15 · doi:10.1175/1520-0469(1951)008<0307:VTARTT>2.0.CO;2
[40] Lappen C-L and Randall D A 2001 Toward a unified parameterization of the boundary layer and moist convection: I. A new type of mass-flux model J. Atmos. Sci.58 2012-36 · doi:10.1175/1520-0469(2001)058<2021:TAUPOT>2.0.CO;2
[41] Lesieur M 2008 Turbulence in Fluids vol 84 (Berlin: Springer) · Zbl 1138.76004 · doi:10.1007/978-1-4020-6435-7
[42] Lilly D K 1962 On the numerical simulation of buoyant convection Tellus14 148-72 · doi:10.1111/j.2153-3490.1962.tb00128.x
[43] Lindzen R S 1988 Instability of plane parallel shear flow (toward a mechanistic picture of how it works) Pure Appl. Geophys.126 103-21 · doi:10.1007/BF00876917
[44] Lorenz D J 2014 Understanding midlatitude jet variability and change using rossby wave chromatography: wave-mean flow interaction J. Atmos. Sci.71 3684-705 · doi:10.1175/JAS-D-13-0201.1
[45] Malkus W V 1954 The heat transport and spectrum of thermal turbulence Proc. R. Soc. London A 225 196-212 · Zbl 0058.20203 · doi:10.1098/rspa.1954.0197
[46] Marston J 2012 Planetary atmospheres as nonequilibrium condensed matter Annu. Rev. Condens. Matter Phys.3 285-310 · doi:10.1146/annurev-conmatphys-020911-125114
[47] Marston J, Qi W and Tobias S 2014 Direct statistical simulation of a jet (arXiv:1412.0381)
[48] Marston J B, Conover E and Schneider T 2008 Statistics of an unstable barotropic jet from a cumulant expansion J. Atmos. Sci.65 1955-66 · doi:10.1175/2007JAS2510.1
[49] McIntyre M E and Palmer T N 1983 Breaking planetary waves in the stratosphere Nature305 593-600 · doi:10.1038/305593a0
[50] Mellor G L 1973 Analytic prediction of the properties of stratified planetary surface layers J. Atmos. Sci.30 1061-9 · doi:10.1175/1520-0469(1973)030<1061:APOTPO>2.0.CO;2
[51] Mellor G L and Yamada T 1982 Development of a turbulence closure model for geophysical fluid problems Rev. Geophys. Space Phys.20 851-75 · doi:10.1029/RG020i004p00851
[52] Merlis T M and Schneider T 2009 Scales of linear baroclinic instability and macroturbulence in dry atmospheres J. Atmos. Sci.66 1821-33 · doi:10.1175/2008JAS2884.1
[53] Monin A and Yaglom A 1971 Statistical Fluid Dynamics vol I and II (Cambridge, MA: MIT Press)
[54] Niemela J, Skrbek L, Sreenivasan K and Donnelly R 2000 Turbulent convection at very high rayleigh numbers Nature404 837-40 · doi:10.1038/35009036
[55] O’Gorman P A and Schneider T 2007 Recovery of atmospheric flow statistics in a general circulation model without nonlinear eddy – eddy interactions Geophys. Res. Lett.34 L22801 · doi:10.1029/2007GL031779
[56] Ooyama K V 2001 A dynamic and thermodynamic foundation for modelling the moist atmosphere with parameterized microphysics J. Atmos. Sci.58 2073-102 · doi:10.1175/1520-0469(2001)058<2073:ADATFF>2.0.CO;2
[57] Orr W M 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid: II. A viscous liquid Proc. R. Ir. Acad. A 69-138 JSTOR
[58] Orszag S A 1970 Analytical theories of turbulence J. Fluid Mech.41 363-86 · Zbl 0191.25601 · doi:10.1017/S0022112070000642
[59] Orszag S A 1973 Lectures on the statistical theory of turbulence Fluid Dynamics ed R Balian and J-L Peube (London: Gordon and Breach) pp 237-374
[60] Parker J B and Krommes J A 2014 Generation of zonal flows through symmetry breaking of statistical homogeneity New J. Phys.16 035006 · doi:10.1088/1367-2630/16/3/035006
[61] Pauluis O 2008 Thermodynamic consistency of the anelastic approximation for a moist atmosphere J. Atmos. Sci.65 2719-29 · doi:10.1175/2007JAS2475.1
[62] Pedlosky J 1970 Finite-amplitude baroclinic waves J. Atmos. Sci.27 15-30 · doi:10.1175/1520-0469(1970)027<0015:FABW>2.0.CO;2
[63] Peixoto J and Oort A 1992 Physics of Climate (New York: American Institute of Physics)
[64] Pope S B 2000 Turbulent Flows (Cambridge: Cambridge University Press) p 805 · Zbl 0966.76002 · doi:10.1017/CBO9780511840531
[65] Pressel K G, Kaul C M, Schneider T, Tan Z and Mishra S 2015 Large-eddy simulation in an anelastic framework with closed water and entropy balances J. Adv. Model. Earth Syst.7 1425-56 · doi:10.1002/2015MS000496
[66] Pruppacher H R, Klett J D and Wang P K 1998 Microphysics of Clouds and Precipitation (London: Taylor and Francis)
[67] Qi W and Marston J B 2014 Hyperviscosity and statistical equilibria of Euler turbulence on the torus and the sphere J. Stat. Mech. P07020 · Zbl 1456.76067 · doi:10.1088/1742-5468/2014/07/P07020
[68] Randel W and Held I 1991 Phase speed spectra of transient eddy fluxes and critical layer absorption J. Atmos. Sci.48 688-97 · doi:10.1175/1520-0469(1991)048<0688:PSSOTE>2.0.CO;2
[69] Rhines P B 1975 Waves and turbulence on a beta-plane J. Fluid Mech.69 417-43 · Zbl 0366.76043 · doi:10.1017/S0022112075001504
[70] Schmidt H and Schumann U 1989 Coherent structure of the convective boundary layer derived from large-eddy simulations J. Fluid Mech.200 511-62 · Zbl 0659.76065 · doi:10.1017/S0022112089000753
[71] Schneider T 2006 The general circulation of the atmosphere Annu. Rev. Earth Planet. Sci.34 655-88 · doi:10.1146/annurev.earth.34.031405.125144
[72] Schneider T and Walker C C 2006 Self-organization of atmospheric macroturbulence into critical states of weak nonlinear eddy – eddy interactions J. Atmos. Sci.63 1569-86 · doi:10.1175/JAS3699.1
[73] Siebesma A P, Soares P M M and Teixeira J 2007 A combined eddy-diffusivity mass-flux approach for the convective boundary layer J. Atmos. Sci.64 1230-48 · doi:10.1175/JAS3888.1
[74] Simmons A and Hoskins B 1976 Baroclinic instability on the sphere: normal modes of the primitive and quasi-geostrophic equations J. Atmos. Sci.33 454-77 · doi:10.1175/1520-0469(1976)033<1454:BIOTSN>2.0.CO;2
[75] Simmons A J and Hoskins B J 1978 The life cycles of some nonlinear baroclinic waves J. Atmos. Sci.35 414-32 · doi:10.1175/1520-0469(1978)035<0414:TLCOSN>2.0.CO;2
[76] Smagorinsky J 1963 General circulation experiments with the primitive equations: I. The basic experiment Mon. Weather Rev.91 99-164 · doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
[77] Smith R K (ed) 1997 The Physics and Parameterization of Moist Atmospheric Convection(NATO Science Series C) (Berlin: Springer) p 498 · doi:10.1007/978-94-015-8828-7
[78] Soares P M M 2004 An eddy-diffusivity/mass-flux parametrization for dry and shallow cumulus convection Q. J. R. Meteorol. Soc.130 3365-83 · doi:10.1256/qj.03.223
[79] Soden B J and Held I M 2006 An assessment of climate feedbacks in coupled ocean-atmosphere models J. Clim.19 3354-60 · doi:10.1175/JCLI3799.1
[80] Spiteri R J and Ruuth S J 2002 A new class of optimal high-order strong-stability-preserving time discretization methods SIAM J. Numer. Anal.40 469-91 · Zbl 1020.65064 · doi:10.1137/S0036142901389025
[81] Srinivasan K and Young W R 2012 Zonostrophic instability J. Atmos. Sci.69 1633-56 · doi:10.1175/JAS-D-11-0200.1
[82] Stephens G L 2005 Cloud feedbacks in the climate system: a critical review J. Clim.18 237-73 · doi:10.1175/JCLI-3243.1
[83] Stevens B and Bony S 2013 What are climate models missing Science340 1053-4 · doi:10.1126/science.1237554
[84] Stewartson K 1977 The evolution of the critical layer of a Rossby wave Geophys. Astrophys. Fluid Dyn.9 185-200 · Zbl 0374.76024 · doi:10.1080/03091927708242326
[85] Straus D M and Ditlevsen P 1999 Two-dimensional turbulence properties of the ECMWF reanalyses Tellus A 51 749-72 · doi:10.1034/j.1600-0870.1996.00015.x
[86] Stull R B 1988 An Introduction to Boundary Layer Meteorology (Berlin: Kluwer Academic) · Zbl 0752.76001 · doi:10.1007/978-94-009-3027-8
[87] Thomson W 1887 XXI. Stability of fluid motion. Rectilineal motion of viscous fluid between two parallel planes London, Edinburgh, Dublin Phil. Mag. J. Sci.24 188-96 · doi:10.1080/14786448708628078
[88] Thorncroft C, Hoskins B J and McIntyre M E 1993 Two paradigms of baroclinic-wave life-cycle behaviour Q. J. R. Meteorol. Soc.119 17-55 · doi:10.1002/qj.49711950903
[89] Tobias S and Marston J 2013 Direct statistical simulation of out-of-equilibrium jets Phys. Rev. Lett.110 104502 · doi:10.1103/PhysRevLett.110.104502
[90] Toomre J, Gough D O and Spiegel E A 1977 Numerical solutions of single-mode convection equations J. Fluid Mech.79 1-31 · Zbl 0369.76002 · doi:10.1017/S0022112077000019
[91] Vallis G K 2006 Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation (Cambridge: Cambridge University Press) · doi:10.1017/CBO9780511790447
[92] Vallis G K and Maltrud M E 1993 Generation of mean flows and jets on a beta plane and over topography J. Phys. Oceanogr.23 1346-62 · doi:10.1175/1520-0485(1993)023<1346:GOMFAJ>2.0.CO;2
[93] Vial J, Dufresne J-L and Bony S 2013 On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates Clim. Dyn.41 3339-62 · doi:10.1007/s00382-013-1725-9
[94] Warn T and Warn H 1978 The evolution of a nonlinear critical level Stud. Appl. Math.59 37-71 · Zbl 0415.76020 · doi:10.1002/sapm197859137
[95] Webb M J, Lambert F H and Gregory J M 2013 Origins of differences in climate sensitivity, forcing and feedback in climate models Clim. Dyn.40 677-707 · doi:10.1007/s00382-012-1336-x
[96] Whitaker J S and Sardeshmukh P D 1998 A linear theory of extratropical synoptic eddy statistics J. Atmos. Sci.55 237-58 · doi:10.1175/1520-0469(1998)055<0237:ALTOES>2.0.CO;2
[97] Williams P 2009 A Proposed modification to the Robert-Asselin time filter Mon. Weather Rev.137 2538-46 · doi:10.1175/2009MWR2724.1
[98] Zhang Y and Held I M 1999 A linear stochastic model of a GCM’s midlatitude storm tracks J. Atmos. Sci.56 3416-35 · doi:10.1175/1520-0469(1999)056<3416:ALSMOA>2.0.CO;2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.