×

The dynamics of a diffusive nutrient-algae model based upon the Sanyang wetland. (English) Zbl 1394.92144

Summary: The stability and spatiotemporal dynamics of a diffusive nutrient-algae model are investigated mathematically and numerically. Mathematical theoretical studies have considered the positivity and boundedness of the solution and the existence, local stability, and global stability of equilibria. Turing instability has also been studied. Furthermore, a series of numerical simulations was performed and a complex Turing pattern found. These results indicate that the nutrient input rate has an important influence on the density and spatial distribution of algae populations. This may help us to obtain a better understanding of the interactions of nutrient and algae and to investigate plankton dynamics in aquatic ecosystems.

MSC:

92D40 Ecology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abraham, E. R., The generation of plankton patchiness by turbulent stirring, Nature, 391, 6667, 577-580, (1998) · doi:10.1038/35361
[2] Medvinsky, A. B.; Petrovskii, S. V.; Tikhonova, I. A.; Malchow, H.; Li, B.-L., Spatiotemporal complexity of plankton and fish dynamics, SIAM Review, 44, 3, 311-370, (2002) · Zbl 1001.92050 · doi:10.1137/s0036144502404442
[3] Dai, C.; Zhao, M.; Chen, L., Homoclinic bifurcation in semi-continuous dynamic systems, International Journal of Biomathematics, 5, 6, (2012) · Zbl 1305.34065 · doi:10.1142/s1793524512500593
[4] Reigada, R.; Hillary, R. M.; Bees, M. A.; Sancho, J. M.; Sagués, F., Plankton blooms induced by turbulent flows, Proceedings of the Royal Society B: Biological Sciences, 270, 1517, 875-880, (2003) · doi:10.1098/rspb.2002.2298
[5] Zhang, W. W.; Zhao, M., Dynamical complexity of a spatial phytoplankton-zooplankton model with an alternative prey and refuge effect, Journal of Applied Mathematics, 2013, (2013) · Zbl 1266.92070 · doi:10.1155/2013/608073
[6] Abbas, S.; Banerjee, M.; Hungerbühler, N., Existence, uniqueness and stability analysis of allelopathic stimulatory phytoplankton model, Journal of Mathematical Analysis and Applications, 367, 1, 249-259, (2010) · Zbl 1185.92087 · doi:10.1016/j.jmaa.2010.01.024
[7] El Saadi, N.; Bah, A., Numerical treatment of a nonlocal model for phytoplankton aggregation, Applied Mathematics and Computation, 218, 17, 8279-8287, (2012) · Zbl 1246.65148 · doi:10.1016/j.amc.2012.01.051
[8] Banerjee, M.; Venturino, E., A phytoplankton-toxic phytoplankton-zooplankton model, Ecological Complexity, 8, 3, 239-248, (2011) · doi:10.1016/j.ecocom.2011.04.001
[9] Garvie, M. R.; Trenchea, C., Optimal control of a nutrient-phytoplankton-zooplankton-fish system, SIAM Journal on Control and Optimization, 46, 3, 775-791, (2007) · Zbl 1357.49090 · doi:10.1137/050645415
[10] Yang, J.; Zhao, M., Complex behavior in a fish algae consumption model with impulsive control strategy, Discrete Dynamics in Nature and Society, 2011, (2011) · Zbl 1233.92080 · doi:10.1155/2011/163541
[11] Ryabov, A. B.; Rudolf, L.; Blasius, B., Vertical distribution and composition of phytoplankton under the influence of an upper mixed layer, Journal of Theoretical Biology, 263, 1, 120-133, (2010) · doi:10.1016/j.jtbi.2009.10.034
[12] Mellard, J. P.; Yoshiyama, K.; Litchman, E.; Klausmeier, C. A., The vertical distribution of phytoplankton in stratified water columns, Journal of Theoretical Biology, 269, 1, 16-30, (2011) · Zbl 1307.92361 · doi:10.1016/j.jtbi.2010.09.041
[13] Drago, M.; Cescon, B.; Iovenitti, L., A three-dimensional numerical model for eutrophication and pollutant transport, Ecological Modelling, 145, 1, 17-34, (2001) · doi:10.1016/s0304-3800(01)00384-2
[14] Luo, J., Phytoplankton-zooplankton dynamics in periodic environments taking into account eutrophication, Mathematical Biosciences, 245, 2, 126-136, (2013) · Zbl 1308.92086 · doi:10.1016/j.mbs.2013.06.002
[15] James, A.; Pitchford, J. W.; Brindley, J., The relationship between plankton blooms, the hatching of fish larvae, and recruitment, Ecological Modelling, 160, 1-2, 77-90, (2003) · doi:10.1016/s0304-3800(02)00311-3
[16] Alvarez-Vázquez, L. J.; Fernández, F. J.; Muñoz-Sola, R., Mathematical analysis of a three-dimensional eutrophication model, Journal of Mathematical Analysis and Applications, 349, 1, 135-155, (2009) · Zbl 1147.92038 · doi:10.1016/j.jmaa.2008.08.031
[17] Klausmeier, C. A., Regular and irregular patterns in semiarid vegetation, Science, 284, 5421, 1826-1828, (1999) · doi:10.1126/science.284.5421.1826
[18] Wang, W. M.; Lin, Y. Z.; Zhang, L.; Rao, F.; Tan, Y., Complex patterns in a predator-prey model with self and cross-diffusion, Communications in Nonlinear Science and Numerical Simulation, 16, 4, 2006-2015, (2011) · Zbl 1221.35423 · doi:10.1016/j.cnsns.2010.08.035
[19] Upadhyay, R. K.; Kumari, N.; Rai, V., Wave of chaos in a diffusive system: generating realistic patterns of patchiness in plankton-fish dynamics, Chaos, Solitons & Fractals, 40, 1, 262-276, (2009) · Zbl 1197.37121 · doi:10.1016/j.chaos.2007.07.078
[20] Zhao, J.; Zhao, M.; Yu, H., Complex dynamical behavior of a predator-prey system with group defense, Mathematical Problems in Engineering, 2013, (2013) · Zbl 1299.37069 · doi:10.1155/2013/910349
[21] Barton, A. D.; Dutkiewicz, S.; Flierl, G.; Bragg, J.; Follows, M. J., Patterns of diversity in marine phytoplankton, Science, 327, 5972, 1509-1511, (2010) · doi:10.1126/science.1184961
[22] von Hardenberg, J.; Meron, E.; Shachak, M.; Zarmi, Y., Diversity of vegetation patterns and desertification, Physical Review Letters, 87, 19, (2001)
[23] Rietkerk, M.; Dekker, S. C.; de Ruiter, P. C.; van de Koppel, J., Self-organized patchiness and catastrophic shifts in ecosystems, Science, 305, 5692, 1926-1929, (2004) · doi:10.1126/science.1101867
[24] Zhao, J. L.; Zhao, M.; Yu, H., Effect of prey refuge on the spatiotemporal dynamics of a modified Leslie-Gower predator-prey system with Holling type III schemes, Entropy, 15, 6, 2431-2447, (2013) · Zbl 1298.49060 · doi:10.3390/e15062431
[25] Turing, A. M., The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society of London B: Biological Sciences, 237, 641, 37-72, (1952) · Zbl 1403.92034 · doi:10.1098/rstb.1952.0012
[26] Wang, R. H.; Liu, Q. X.; Sun, G. Q.; Jin, Z.; van de Koppel, J., Nonlinear dynamic and pattern bifurcations in a model for spatial patterns in young mussel beds, Journal of the Royal Society Interface, 6, 37, 705-718, (2009) · doi:10.1098/rsif.2008.0439
[27] Serizawa, H.; Amemiya, T.; Itoh, K., Patchiness in a minimal nutrient—phytoplankton model, Journal of Biosciences, 33, 3, 391-403, (2008) · doi:10.1007/s12038-008-0059-y
[28] Liu, Q.-X.; Sun, G.-Q.; Jin, Z.; Li, B.-L., Emergence of spatiotemporal chaos arising from far-field breakup of spiral waves in the plankton ecological systems, Chinese Physics B, 18, 2, 506-515, (2009) · doi:10.1088/1674-1056/18/2/021
[29] van de Koppel, J.; Rietkerk, M.; Dankers, N.; Herman, P. M. J., Scale-dependent feedback and regular spatial patterns in young mussel beds, The American Naturalist, 165, 3, E66-E77, (2005) · doi:10.1086/428362
[30] Wang, Y. P.; Zhao, M.; Dai, C. J.; Pan, X., Nonlinear dynamics of a nutrient-plankton model, Abstract and Applied Analysis, 2014, (2014) · doi:10.1155/2014/451757
[31] Edwards, A. M., Adding detritus to a nutrient-phytoplankton-zooplankton model: a dynamical-systems approach, Journal of Plankton Research, 23, 4, 389-413, (2001) · doi:10.1093/plankt/23.4.389
[32] Mäler, K. G., Development, ecological resources and their management: a study of complex dynamic systems, European Economic Review, 44, 4–6, 645-665, (2000) · doi:10.1016/s0014-2921(00)00043-x
[33] Tian, Y. L.; Weng, P. X., Stability analysis of diffusive predator–prey model with modified Leslie–Gower and Holling-type III schemes, Applied Mathematics and Computation, 218, 7, 3733-3745, (2011) · Zbl 1238.92050 · doi:10.1016/j.amc.2011.09.018
[34] Guan, X.; Wang, W.; Cai, Y., Spatiotemporal dynamics of a Leslie-Gower predator-prey model incorporating a prey refuge, Nonlinear Analysis: Real World Applications, 12, 4, 2385-2395, (2011) · Zbl 1225.49038 · doi:10.1016/j.nonrwa.2011.02.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.