×

Plastic size effect analysis of lamellar composites using a discrete dislocation plasticity approach. (English) Zbl 1426.74116

Summary: Plastic size effect analysis of lamellar composites consisting of elastic and elastic – plastic layers is performed using a discrete dislocation plasticity approach, which is based on applying periodic homogenization to the superposition method for discrete dislocation plasticity. In this approach, the decomposition of displacements into macro and perturbed components circumvents the calculation of superposing displacement fields induced by dislocations in an infinitely homogeneous medium, resulting in two periodic boundary value problems specialized for the analysis of representative volume elements. The present approach is verified by analyzing a model lamellar composite that includes edge dislocations fixed at interfaces. The plastic size effects due to dislocation pile-ups at interfaces are also analyzed. The analysis shows that, strain hardening in elastic – plastic layers arises depending on two factors, namely the thickness and stiffness of elastic layers; and the gap between slip planes in adjacent elastic – plastic layers. In the case where the thickness of elastic layers is several dozen nm, strain hardening in elastic – plastic layers is restrained as the gap of the slip planes decreases. This particular effect is attributed to the long range stress due to pile-ups in adjacent elastic-plastic layers.

MSC:

74E30 Composite and mixture properties
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74Q05 Homogenization in equilibrium problems of solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Akarapu, S.; Zbib, H. M.; Bahr, D. F.: Analysis of heterogeneous deformation and dislocation dynamics in single crystal micropillars under compression, International journal of plasticity 26, 239-257 (2010) · Zbl 1426.74098
[2] Balint, D. S.; Deshpande, V. S.; Needleman, A.; Van Der Giessen, E.: Discrete dislocation plasticity analysis of the grain size dependence of the flow strength of polycrystals, International journal of plasticity 24, 2149-2172 (2008) · Zbl 1232.74015 · doi:10.1016/j.ijplas.2007.08.005
[3] Belytschko, T.; Gracie, R.: On XFEM applications to dislocations and interfaces, International journal of plasticity 23, 1721-1738 (2007) · Zbl 1126.74046 · doi:10.1016/j.ijplas.2007.03.003
[4] Bensoussan, A.; Lions, J. L.; Papanicolaou, G.: Asymptotic analysis for periodic structures, (1978) · Zbl 0404.35001
[5] Cleveringa, H. H. M.; Van Der Giessen, E.; Needleman, A.: Comparison of discrete dislocation and continuum plasticity predictions for a composite material, Acta materialia 45, 3163-3179 (1997)
[6] Danas, K.; Deshpande, V. S.; Fleck, N. A.: Compliant interfaces: a mechanism for relaxation of dislocation pile-ups in a sheared single crystal, International journal of plasticity 26, 1792-1805 (2010) · Zbl 1454.74032
[7] Devincre, B.; Kubin, L. P.: Simulations of forest interactions and strain hardening in FCC crystals, Modelling and simulation in materials science and engineering 2, 559-570 (1994)
[8] El-Awady, J. A.; Rao, S. I.; Woodward, C.; Dimiduk, D. M.; Uchic, M. D.: Trapping and escape of dislocations in micro-crystals with external and internal barriers, International journal of plasticity 27, 372-387 (2011) · Zbl 1426.74099
[9] El-Azab, A.: The boundary value problem of dislocation dynamics, Medelling and simulation in materials science and engineering 8, 37-54 (2000)
[10] Ghoniem, N. M.; Han, X.: Dislocation motion in anisotropic multilayer materials, Philosophical magazine 85, 2809-2830 (2005)
[11] Gracie, R.; Oswald, J.; Belytschko, T.: On a new extended finite element method for dislocations: core enrichment and nonlinear formulation, Journal of the mechanics and physics of solids 56, 200-214 (2008) · Zbl 1162.74464 · doi:10.1016/j.jmps.2007.07.010
[12] Gulluoglu, A. N.; Srolovitz, D. J.; Lesar, R.; Lomdahl, P. S.: Dislocation distributions in two dimensions, Scripta metallurgica 23, 1347-1352 (1989)
[13] Hill, R.: Elastic properties of reinforced solids: some theoretical principles, Journal of the mechanics and physics of solids 11, 357-372 (1963) · Zbl 0114.15804 · doi:10.1016/0022-5096(63)90036-X
[14] Hirth, J. P.; Lothe, J.: Theory of dislocations, (1982)
[15] Lemarchand, C.; Devincre, B.; Kubin, L. P.: Homogenization method for a discrete-continuum simulation of dislocation dynamics, Journal of the mechanics and physics of solids 49, 1969-1982 (2001) · Zbl 0998.74063 · doi:10.1016/S0022-5096(01)00026-6
[16] Liu, Z. L.; Liu, X. M.; Zhuang, Z.; You, X. C.: A multi-scale computational model of crystal plasticity at submicron-to-nanometer scales, International journal of plasticity 25, 1436-1455 (2009) · Zbl 1235.74013
[17] Nemat-Nasser, S.; Hori, M.: Micromechanics: overall properties of heterogeneous materials, (1993) · Zbl 0924.73006
[18] Nicola, N.; Xiang, Y.; Vlassak, J. J.; Van Der Giessen, E.; Needleman, A.: Plastic deformation of freestanding thin films: experiments and modeling, Journal of the mechanics and physics of solids 54, 2089-2110 (2006) · Zbl 1120.74617 · doi:10.1016/j.jmps.2006.04.005
[19] Ohashi, T.; Kawamukai, M.; Zbib, H.: A multiscale approach for modeling scale-dependent yield stress in polycrystalline metals, International journal of plasticity 23, 897-914 (2007) · Zbl 1115.74013 · doi:10.1016/j.ijplas.2006.10.002
[20] Ohno, N.; Okumura, D.; Noguchi, H.: Microscopic symmetric bifurcation condition of cellular solids based on a homogenization theory of finite deformation, Journal of the mechanics and physics of solids 50, 1125-1153 (2002) · Zbl 1070.74012 · doi:10.1016/S0022-5096(01)00106-5
[21] Okumura, D.; Higashi, Y.; Sumida, K.; Ohno, N.: A homogenization theory of strain gradient single-crystal plasticity and its finite element discretization, International journal of plasticity 23, 1148-1166 (2007) · Zbl 1294.74055
[22] Okumura, D.; Ohno, N.; Katagiri, Y.: Formulation of a homogenization theory for discrete dislocation dynamics analysis, Journal of the society of materials science Japan 59, 149-156 (2010)
[23] Okumura, D.; Ohno, N.; Noguchi, H.: Elastoplastic microscopic bifurcation and post-bifurcation behavior of periodic cellular solids, Journal of the mechanics and physics of solids 52, 641-666 (2004) · Zbl 1106.74351 · doi:10.1016/j.jmps.2003.07.002
[24] Segurado, J.; Llorca, J.: Discrete dislocation dynamics analysis of the effect of lattice orientation on void growth in single crystals, International journal of plasticity 26, 806-819 (2010) · Zbl 1426.74102
[25] Shao, X. H.; Yang, Z. Q.; Ma, X. L.: Strengthening and toughening mechanisms in mg – zn – Y alloys with a long period stacking ordered structure, Acta materiallia 58, 4760-4771 (2010)
[26] Shishvan, S. S.; Mohammadi, S.; Rahimian, M.; Van Der Giessen, E.: Plane-strain discrete dislocation plasticity incorporating anisotropic elasticity, International journal of solids and structures 48, 374-387 (2011) · Zbl 1202.74020 · doi:10.1016/j.ijsolstr.2010.10.010
[27] Suquet, P.M., 1987. Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palencia, E., Zaoui, A. (Eds.), Homogenization Techniques for Composite Media, Lecture Notes in Physics, vol. 272, Springer, Berlin, pp. 193 – 278. · Zbl 0645.73012
[28] Takahashi, A.; Ghoniem, N. M.: A computational method for dislocation – precipitate interaction, Journal of the mechanics and physics of solids 56, 1534-1553 (2008) · Zbl 1171.74459 · doi:10.1016/j.jmps.2007.08.002
[29] Tsuru, T.; Shibutani, Y.; Kaji, Y.: Nanoscale contact plasticity of crystalline metal: experiment and analytical investigation via atomistic and discrete dislocation models, Acta materialia 58, 3096-3102 (2010)
[30] Van Der Giessen, E.; Needleman, A.: Discrete dislocation plasticity: a simple planar model, Modelling and simulation in materials science and engineering 3, 689-735 (1995)
[31] Weertman, J.: Dislocation based fracture mechanics, (1996) · Zbl 0982.74004
[32] Wu, X.; Ohno, N.: A homogenization theory for time-dependent nonlinear composites with periodic internal structures, International journal of solids and structures 36, 4991-5012 (1999) · Zbl 0973.74007 · doi:10.1016/S0020-7683(98)00236-4
[33] Xia, Z.; Zhang, Y.; Ellyin, F.: A unified periodical boundary conditions for representative volume elements of composites and applications, International journal of solids and structures 40, 1907-1921 (2003) · Zbl 1048.74011 · doi:10.1016/S0020-7683(03)00024-6
[34] Yashiro, K.; Kurose, F.; Nakashima, Y.; Kubo, K.; Tomita, Y.; Zbib, H. M.: Discrete dislocation dynamics simulation of cutting of \(\gamma ^{\prime}\) precipitate and interfacial dislocation network in ni-based superalloys, International journal of plasticity 22, 713-723 (2006) · Zbl 1190.74009 · doi:10.1016/j.ijplas.2005.05.004
[35] Zbib, H. M.; Rhee, M.; Hirth, J. P.: On plastic deformation and the dynamics of 3D dislocations, International journal of mechanical sciences 40, 113-127 (1998) · Zbl 0909.73074 · doi:10.1016/S0020-7403(97)00043-X
[36] Zbib, H. M.; De La Rubia, T. D.: A multiscale model of plasticity, International journal of plasticity 18, 1133-1163 (2002) · Zbl 1062.74008 · doi:10.1016/S0749-6419(01)00044-4
[37] Zhang, M.; Zhang, J.; Mcdowell, D. L.: Microstructure-based crystal plasticity modeling of cyclic deformation of ti-6Al-4V, International journal of plasticity 23, 1328-1348 (2007) · Zbl 1134.74349 · doi:10.1016/j.ijplas.2006.11.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.