×

zbMATH — the first resource for mathematics

Granular counting of uncertain data. (English) Zbl 1452.68220
Summary: We propose a definition of granular count realized in the presence of uncertain data modeled through possibility distributions. We show that the resulting counts are fuzzy intervals in the domain of natural numbers. Based on this result, we devise two algorithms for granular counting: an exact counting algorithm with quadratic-time complexity and an approximate counting algorithm with linear-time complexity. We compare the two algorithms on synthetic data and show their application to a Bioinformatics scenario concerning the assessment of gene expressions in cells.
MSC:
68T37 Reasoning under uncertainty in the context of artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kitchin, R., The Data Revolution: Big Data, Open Data, Data Infrastructures & Their Consequences (2014), SAGE Publications Ltd, 1 Oliver’s Yard, 55 City Road, London EC1Y 1SP, United Kingdom
[2] Aggarwal, C. C.; Yu, P. S., A survey of uncertain data algorithms and applications, IEEE Trans. Knowl. Data Eng., 21, 5, 609-623 (2009)
[3] Boukhelifa, N.; Perrin, M.-E.; Huron, S.; Eagan, J., How data workers cope with uncertainty: a task characterisation study, (Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (2017), ACM), 3645-3656
[4] Kakar, P.; Chia, A. Y.-S., If you can’t beat them, join them, (Proceedings of the 23rd ACM International Conference on Multimedia - MM ’15 (2015), ACM, ACM Press: ACM, ACM Press New York, New York, USA), 571-580
[5] Ghosh, A.; Manwani, N.; Sastry, P. S., Making risk minimization tolerant to label noise, Neurocomputing, 160, 93-107 (2015)
[6] Frénay, B.; Verleysen, M., Classification in the presence of label noise: a survey, IEEE Trans. Neural Netw. Learn. Syst., 25, 5, 845-869 (2014)
[7] Geng, X., Label distribution learning, IEEE Trans. Knowl. Data Eng., 28, 7, 1734-1748 (2016)
[8] Agarwal, P. K.; Cheng, S.-W.; Tao, Y.; Yi, K., Indexing uncertain data, (Proceedings of the Twenty-Eighth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (2009), ACM), 137-146
[9] Sun, L.; Cheng, R.; Cheung, D. W.; Cheng, J., Mining uncertain data with probabilistic guarantees, (Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’10 (2010), ACM, ACM Press: ACM, ACM Press New York, New York, USA), 273
[10] Hua, M.; Pei, J.; Zhang, W.; Lin, X., Ranking queries on uncertain data: a probabilistic threshold approach, (Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (2008), ACM), 673-686
[11] Hüllermeier, E.; Beringer, J., Learning from ambiguously labeled examples, (Advances in Intelligent Data Analysis, vol. VI (2005)), 739 · Zbl 1141.68567
[12] Lin, T. Y.; Cercone, N., Rough Sets and Data Mining (1996), Springer US: Springer US Boston, MA
[13] Vannoorenberghe, P., Reasoning with unlabeled samples and belief functions, (The 12th IEEE International Conference on Fuzzy Systems, vol. 2. The 12th IEEE International Conference on Fuzzy Systems, vol. 2, FUZZ ’03, 2003 (2003), IEEE), 814-818
[14] Dubois, D.; Prade, H., Possibility Theory: an Approach to Computerized Processing of Uncertainty (2012), Springer Science & Business Media
[15] Dubois, D., Possibility theory and statistical reasoning, Comput. Stat. Data Anal., 51, 47-69 (2006) · Zbl 1157.62309
[16] Delmotte, F., Detection of defective sources in the setting of possibility theory, Fuzzy Sets Syst., 158, 5, 555-571 (2007)
[17] Benferhat, S.; Tabia, K., Inference in possibilistic network classifiers under uncertain observations, Ann. Math. Artif. Intell., 64, 2, 269-309 (2012) · Zbl 1252.68295
[18] Hulsmann, J.; Buschermohle, A.; Brockmann, W., Incorporating dynamic uncertainties into a fuzzy classifier, (Proceedings of the 7th Conference of the European Society for Fuzzy Logic and Technology. Proceedings of the 7th Conference of the European Society for Fuzzy Logic and Technology, EUSFLAT-2011 (2011), Atlantis Press: Atlantis Press Paris, France), 388-395
[19] Bounhas, M.; Hamed, M. G.; Prade, H.; Serrurier, M.; Mellouli, K., Naive possibilistic classifiers for imprecise or uncertain numerical data, Fuzzy Sets Syst., 239, Supplement C, 137-156 (2014) · Zbl 1315.68234
[20] Zadeh, L., Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets Syst., 1, 1, 3-28 (1978) · Zbl 0377.04002
[21] Bandemer, H.; Näther, W., Fuzzy Data Analysis, vol. 20 (2012), Springer Science & Business Media
[22] Dubois, D.; Prade, H., Fuzzy cardinality and the modeling of imprecise quantification, Fuzzy Sets Syst., 16, 3, 199-230 (1985) · Zbl 0601.03006
[23] Kosko, B., Counting with fuzzy sets, IEEE Trans. Pattern Anal. Mach. Intell., PAMI-8, 4, 556-557 (1986) · Zbl 0638.04008
[24] Ralescu, D., Cardinality, quantifiers, and the aggregation of fuzzy criteria, Fuzzy Sets Syst., 69, 3, 355-365 (1995) · Zbl 0844.04007
[25] Zadeh, L. A., Possibility theory and soft data analysis, (Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems (1996)), 481-541
[26] Wille, R., Formal concept analysis as mathematical theory of concepts and concept hierarchies, (Ganter, B.; Stumme, G.; Wille, R., Formal Concept Analysis: Foundations and Applications (2005), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 1-33 · Zbl 1152.68636
[27] Dubois, D.; Prade, H., Possibility theory and formal concept analysis: characterizing independent sub-contexts, Fuzzy Sets Syst., 196, 4-16 (2012) · Zbl 1251.68231
[28] Dubois, D.; Prade, H., Bridging gaps between several forms of granular computing, Granul. Comput., 1, 2, 115-126 (2016)
[29] Chen, S.-M.; Yeh, M.-S.; Hsiao, P.-Y., A comparison of similarity measures of fuzzy values, Fuzzy Sets Syst., 72, 1, 79-89 (1995)
[30] Pappis, C. P.; Karacapilidis, N. I., A comparative assessment of measures of similarity of fuzzy values, Fuzzy Sets Syst., 56, 2, 171-174 (1993) · Zbl 0795.04007
[31] Consiglio, A.; Mencar, C.; Grillo, G.; Liuni, S., Managing NGS differential expression uncertainty with fuzzy sets, (Angelini, C.; Rovetta, S.; Rancoita, P. M.V., Computational Intelligence Methods for Bioinformatics and Biostatistics. Computational Intelligence Methods for Bioinformatics and Biostatistics, CIBB 2015. Computational Intelligence Methods for Bioinformatics and Biostatistics. Computational Intelligence Methods for Bioinformatics and Biostatistics, CIBB 2015, Lecture Notes in Bioinformatics, vol. 9874 (2016), Springer: Springer Naples, Italy), 42-53, (revised selected papers)
[32] Consiglio, A., MultiDEA: a Fuzzy Method for RNA-Seq Differential Expression Analysis in Presence of Multireads (2016), University of Bari “A. Moro”, Ph.D. thesis
[33] Consiglio, A.; Mencar, C.; Grillo, G.; Marzano, F.; Caratozzolo, M. F.; Liuni, S., A fuzzy method for RNA-Seq differential expression analysis in presence of multireads, BMC Bioinform., 17, S12:345, 167-182 (2016)
[34] Wilming, L. G.; Gilbert, J. G.R.; Howe, K.; Trevanion, S.; Hubbard, T.; Harrow, J. L., The vertebrate genome annotation (Vega) database, Nucleic Acids Res., 36, suppl. 1, D753-D760 (2007)
[35] Dubois, D.; Prade, H., Twofold fuzzy sets and rough sets-some issues in knowledge representation, Fuzzy Sets Syst., 23, 1, 3-18 (1987) · Zbl 0633.68099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.