×

Conjugate problems in convective heat transfer: review. (English) Zbl 1181.80004

Summary: A review of conjugate convective heat transfer problems solved during the early and current time of development of this modern approach is presented. The discussion is based on analytical solutions of selected typical relatively simple conjugate problems including steady-state and transient processes, thermal material treatment, and heat and mass transfer in drying. This brief survey is accompanied by a list of almost two hundred publications considering the application of different more and less complex analytical and numerical conjugate models for simulating technology processes and industrial devices from aerospace systems to food production. The references are combined into groups of works studying similar problems so that each of the groups corresponds to one of the selected analytical solutions considered in detail. This structure of review gives the reader an understanding of the early and current situation in conjugate convective heat transfer modeling and makes it possible to use the information presented as an introduction to this area on the one hand, and to find more complicated publications of interest on the other hand.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
76R99 Diffusion and convection
76D05 Navier-Stokes equations for incompressible viscous fluids
76-02 Research exposition (monographs, survey articles) pertaining to fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] A. R. Manwell, The Tricomi Equation with Applications to the Theory of Plane Transonic Flow, vol. 35 of Research Notes in Mathematics, Pitman, Boston, Mass, USA, 1979. · Zbl 0407.76034
[2] A. Dorfman, “Combustion stabilization by forced oscillations in a duct,” SIAM Journal on Applied Mathematics, vol. 65, no. 4, pp. 1175-1199, 2005. · Zbl 1087.80004 · doi:10.1137/S0036139902415579
[3] C. Kleinstreuer, Biofluid Dynamics, Taylor & Francis, Boca Raton, Fla, USA, 2006.
[4] A. S. Dorfman, “Heat transfer from liquid to liquid in a flow past two sides of a plate,” High Temperature, vol. 8, no. 3, pp. 515-520, 1970.
[5] A. S. Dorfman, Heat Transfer in Flow around Nonisothermal Bodies, Mashinostroenie, Moscow, Russia, 1982.
[6] T. L. Perelman, “Heat transfer in a laminar boundary layer on a thin plate with inner sources,” Journal of Engineering Physics and Thermophysics, vol. 4, no. 5, pp. 54-61, 1961 (Russian).
[7] I. O. Kumar, “Conjugate problem of heat transfer in a laminar boundary layer with injection,” Journal of Engineering Physics and Thermophysics, vol. 14, no. 5, pp. 781-791, 1968 (Russian). · doi:10.1007/BF00828053
[8] I. O. Kumar and A. B. Bartman, “Conjugate heat transfer in a laminar boundary layer of compressible fluid with radiation,” Heat and Mass Transfer, vol. 9, pp. 481-489, 1968 (Russian).
[9] M. J. Lighthill, “Contributions to the theory of heat transfer through a laminar boundary layer,” Proceedings of the Royal Society of London. Series A, vol. 202, pp. 359-377, 1950. · Zbl 0038.11504 · doi:10.1098/rspa.1950.0106
[10] T. L. Perlman, “About one boundary problem for equation of the mixed type in theory of conduction,” Journal of Engineering Physics and Thermophysics, vol. 4, no. 8, pp. 121-125, 1961 (Russian).
[11] T. L. Perelman, “About conjugate heat transfer problems,” Heat and Mass Transfer, vol. 5, pp. 79-93, 1963 (Russian).
[12] M. Soliman and H. A. Johnson, “Transient heat transfer for turbulent flow over a flat plate of appreciable thermal capacity and containing time-dependent heat source,” Journal of Heat Transfer, vol. 89, no. 4, pp. 362-372, 1967.
[13] A. A. Pomranzev, “Heating of the plate by supersonic flow,” Journal of Engineering Physics and Thermophysics, vol. 3, no. 8, pp. 39-46, 1960.
[14] I. N. Sokolova, “Plate temperature streamlined by supersonic flow,” in Theoretical Aerodynamic Investigations, pp. 206-221, ZAGI, Oborongis, Moscow, Russia, 1957.
[15] G. W. Emmons, “Unsteady aerodynamic plate heating,” in Boundary Layer Problems and Heat Transfer, pp. 329-337, Gosenergoisdat, Moscow, Russia, 1960.
[16] A. V. Luikov, T. L. Perelman, R. S. Levitin, and L. B. Gdalevich, “Heat transfer from a plate in a compressible gas flow,” International Journal of Heat and Mass Transfer, vol. 13, no. 8, pp. 1261-1270, 1970. · Zbl 0201.29105 · doi:10.1016/0017-9310(70)90067-0
[17] L. B. Gdalevich and B. M. Khusid, “Conjugate unsteady heat transfer between a thin plate and incompressible fluid flow,” Journal of Engineering Physics and Thermophysics, vol. 20, no. 6, pp. 1045-1052, 1971 (Russian).
[18] B. M. Khusid, “Conjugate heat transfer between thin wedge and incompressible fluid flow,” Heat and Mass Transfer, vol. 8, pp. 296-300, 1972 (Russian).
[19] B. M. Khusid, “Parameters determining conjugate heat transfer characteristics,” Kinetics of Heat and Mass Transfer, pp. 76-88, 1975 (Russian).
[20] B. L. Kopeliovich, R. S. Levitin, B. M. Khusid, L. B. Gdalevich, and T. L. Perelman, “Unsteady conjugate heat transfer between a semi-infinite surface and the oncoming compressible flow. III. Numerical computation,” Journal of Engineering Physics and Thermophysics, vol. 30, no. 3, pp. 509-511, 1976 (Russian).
[21] T. L. Perelman, R. S. Levitin, L. B. Cdalevich, and B. M. Khusid, “Unsteady-state conjugated heat transfer between a semi-infinite surface and incoming flow of a compressible fluid-I. Reduction to the integral relation,” International Journal of Heat and Mass Transfer, vol. 15, no. 12, pp. 2551-2561, 1972. · Zbl 0269.76057 · doi:10.1016/0017-9310(72)90146-9
[22] T. L. Perelman, “On asymptotic expansions of solutions of a certain class of integral equations,” Prikladnaya Matematika i Mekhanika, vol. 25, no. 6, pp. 1145-1147, 1961 (Russian). · Zbl 0111.30102 · doi:10.1016/0021-8928(62)90151-X
[23] A. V. Luikov, A. A. Aleksashenko, and V. A. Aleksashenko, Conjugate Heat Transfer Problems, Izd. Belarus/ State University, Minsk, Belorus, 1971. · Zbl 0268.76062
[24] A. V. Luikov, “Conjugate convective heat transfer problems,” International Journal of Heat and Mass Transfer, vol. 17, no. 2, pp. 257-265, 1974. · doi:10.1016/0017-9310(74)90087-8
[25] U. Olsson, “Laminar flow heat transfer from wedge-shaped bodies with limited heat conductivity,” International Journal of Heat and Mass Transfer, vol. 16, no. 2, pp. 329-336, 1973. · Zbl 0277.76083 · doi:10.1016/0017-9310(73)90061-6
[26] A. M. Grishin and V. I. Zinchenko, “Conjugated heat and mass transfer between a reactive solid and a gas in the presence of nonequilibrium chemical reactions,” Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, vol. 9, no. 2, pp. 121-129, 1974 (Russian).
[27] K. Chida and Y. Katto, “Conjugate heat transfer of continuously moving surfaces,” International Journal of Heat and Mass Transfer, vol. 19, no. 5, pp. 461-470, 1976. · Zbl 0325.76127 · doi:10.1016/0017-9310(76)90158-7
[28] A. S. Dorfman, “Methods of estimation of coefficients of heat transfer from nonisothermal walls,” Heat Transfer-Soviet Research, vol. l5, no. 6, pp. 35-57, 1983.
[29] E. R. G. Eckert and R. M. Drake, Heatnd Mass Transfer, McGrew-Hill, New York, NY, USA, 1959.
[30] W. Tolle, Grenzschicht Theoretische Untersuchungen zum Problem des Warmeaustausches bei Gleichstrom und Gegenstrom, dissertation, Karlsruhe, Germany, 1964. · Zbl 0115.21105
[31] R. Viskanta and M. Abrams, “Thermal interaction of two streams in boundary-layer flow separated by a plate,” International Journal of Heat and Mass Transfer, vol. 14, no. 9, pp. 1311-1321, 1971. · doi:10.1016/0017-9310(71)90180-3
[32] I. L. Dunin and V. V. Ivanov, “Conjugate heat transfer problem with surface radiation taken into account,” Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, vol. 9, no. 4, pp. 187-190, 1974 (Russian).
[33] P. F. Tomlan and J. L. Hudson, “Transient response of countercurrent heat exchangers with short contact time,” International Journal of Heat and Mass Transfer, vol. 11, no. 8, pp. 1253-1265, 1968. · Zbl 0164.28502 · doi:10.1016/0017-9310(68)90195-6
[34] M. S. Sohal and J. R. Howel, “Determination of plate temperature in case of combined conduction, convection and radiation heat exchange,” International Journal of Heat and Mass Transfer, vol. 16, no. 11, pp. 2055-2066, 1973. · Zbl 0276.76045 · doi:10.1016/0017-9310(73)90108-7
[35] A. S. Dorfman, “Influence function for an unheated section and relation between the superposition method and series expansion with respect to form parameters,” High Temperature, vol. 11, no. 1, pp. 84-89, 1973.
[36] A. S. Dorfman, “Exact solution of thermal boundary layer equation with arbitrary temperature distribution on streamlined surface,” High Temperature, vol. 8, no. 5, pp. 955-963, 1971.
[37] A. S. Dorfman and O. D. Lipovetskaia, “Heat transfer of arbitrarily nonisothermic surfaces with gradient turbulent flow of an incompressible liquid within a wide range of prandtl and reynolds numbers,” High Temperature, vol. 14, no. 1, pp. 86-92, 1976.
[38] A. S. Dorfman, “A new type of boundary condition in convective heat transfer problems,” International Journal of Heat and Mass Transfer, vol. 28, no. 6, pp. 1197-1203, 1985. · Zbl 0569.76094 · doi:10.1016/0017-9310(85)90127-9
[39] O. D. Lipovetskaia, “Conjugate heat transfer between two turbulent flowing fluids separated by thin plate,” Teplophysika I Teplotechnika, no. 33, pp. 75-79, 1977 (Russian).
[40] Y. I. Shvets, A. S. Dorfman, and O. I. Didenko, “Heat transfer between two countercurrently flowing fluids separated by a thin wall,” Heat Transfer-Soviet Research, vol. 7, no. 6, pp. 32-39, 1976.
[41] R. Viskanta and D. W. Lankford, “Coupling of heat transfer between two natural convection systems separated by a vertical wall,” International Journal of Heat and Mass Transfer, vol. 24, no. 7, pp. 1171-1177, 1981. · doi:10.1016/0017-9310(81)90166-6
[42] G. D. Raithby and K. G. T. Hollands, “A general method of obtaining approximate solution to laminar and turbulent natural convection problems,” in Advances in Heat Transfer, T. F. Irvine Jr. and J. P. Hartnett, Eds., vol. 11, pp. 265-315, Academic Press, New York, NY, USA, 1975.
[43] G. S. H. Lock and R. S. Ko, “Coupling through a wall between two free convective systems,” International Journal of Heat and Mass Transfer, vol. 16, no. 11, pp. 2087-2096, 1973. · Zbl 0275.76012 · doi:10.1016/0017-9310(73)90111-7
[44] E. M. Sparrow and M. Faghri, “fluid-to-fluid conjugate heat transfer for a vertical pipe-internal forced convection and external natural convection,” Journal of Heat Transfer, vol. 102, no. 3, pp. 402-407, 1980.
[45] M.-J. Huang, J.-P. Yeh, and H.-J. Shaw, “Problem of conjugate conduction and convection between finitely vertical plates heated from below,” Computers and Structures, vol. 37, no. 5, pp. 823-831, 1990. · doi:10.1016/0045-7949(90)90110-N
[46] W.-S. Yu and H.-T. Lin, “Conjugate problems of conduction and free convection on vertical and horizontal flat plates,” International Journal of Heat and Mass Transfer, vol. 36, no. 5, pp. 1303-1313, 1993. · Zbl 0775.76181 · doi:10.1016/S0017-9310(05)80099-7
[47] M. Hriber\vsek and L. \vSkerget, “Numerical study of conjugate double diffusive natural convection in a closed cavity,” ZAMM Zeitschrift für Angewandte Mathematik und Mechanik, vol. 80, no. 4, supplement 3, pp. S689-S690, 2000. · Zbl 0951.76551
[48] A. S. Dorfman and B. V. Davydenko, “Conjugate heat transfer in flow over elliptical cylinders,” High Temperature, vol. 10, no. 2, pp. 334-340, 1980.
[49] B. V. Davydenko, “Finite difference solution of conjugate heat transfer problems by reducing them to a equivalent heat conduction problems,” Promyshlennaia Teplotekhnika, vol. 6, no. 3, pp. 55-59, 1984 (Russian).
[50] V. I. Zinchenko and E. N. Putyatina, “Solution of coupled heat-transfer problems in flow about bodies of different shapes,” Journal of Applied Mechanics and Technical Physics, vol. 27, no. 2, pp. 234-241, 1986. · doi:10.1007/BF00914735
[51] V. M. Bregman and B. M. Mitin, “Conjugate method of calculating temperature fields in plane bodies of arbitrary form with convective-pellicular heating,” High Temperature, vol. 27, no. 4, pp. 563-571, 1990.
[52] X. S. Wang, Z. Dagan, and L. M. Jiji, “Conjugate heat transfer between a laminar impinging liquid jet and a solid disk,” International Journal of Heat and Mass Transfer, vol. 32, no. 11, pp. 2189-2197, 1989. · doi:10.1016/0017-9310(89)90125-7
[53] C. E. Siewert and J. R. Thomas Jr., “On coupled conductive-radiative heat-transfer problems in a sphere,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 46, no. 2, pp. 63-72, 1991. · doi:10.1016/0022-4073(91)90082-2
[54] M. Vynnycky, S. Kimura, K. Kanev, and I. Pop, “Forced convection heat transfer from a flat plate: the conjugate problem,” International Journal of Heat and Mass Transfer, vol. 41, no. 1, pp. 45-59, 1998. · Zbl 0917.76086 · doi:10.1016/S0017-9310(97)00113-0
[55] K. Chida, “Surface temperature of a flat plate of finite thickness under conjugate laminar forced convection heat transfer condition,” International Journal of Heat and Mass Transfer, vol. 43, no. 4, pp. 639-642, 1999. · Zbl 0949.76525 · doi:10.1016/S0017-9310(99)00170-2
[56] W. Song and B. Q. Li, “Finite element solution of conjugate heat transfer problems with and without the use of gap elements,” International Journal of Numerical Methods for Heat and Fluid Flow, vol. 12, no. 1, pp. 81-99, 2002. · Zbl 1159.76353 · doi:10.1108/09615530210413181
[57] D. L. Reviznicov, Numerical simultion of processes of conjugate heat transfer under condition of supersonic flow around bodies, Dissertation, Moscow Aviation Inst, Moscow, Russia, 1991.
[58] L. Betchen, A. G. Straatman, and B. E. Thompson, “A nonequilibrium finite-volume model for conjugate fluid/porous/solid domains,” Numerical Heat Transfer A, vol. 49, no. 6, pp. 543-565, 2006. · doi:10.1080/10407780500430967
[59] V. A. Bityurin, A. N. Bocharov, V. A. Zhelnin, and G. A. Lyubimov, “Conjugate heat transfer at a wall with nonuniform properties,” Journal of Propulsion and Power, vol. 5, no. 5, pp. 615-619, 1989. · Zbl 0592.76174 · doi:10.2514/3.23198
[60] C. F. Stein, P. Johansson, L. Lennart, M. Sen, and M. Gad-el-Hak, “An analytical asymptotic solution to a conjugate heat transfer problem,” International Journal of Heat and Mass Transfer, vol. 45, no. 12, pp. 2485-2500, 2002. · Zbl 1101.76389 · doi:10.1016/S0017-9310(01)00343-X
[61] O. A. Grechannyy, A. S. Dorfman, and V. G. Gorobets, “Efficiency and conjugate heat transfer of finned flat surfaces,” High Timperature, vol. 11, no. 5, pp. 900-906, 1986.
[62] A. S. Dorfman, “Conjugate heat transfer in fins,” Applied Thermal Science, vol. 2, no. 6, pp. 1-9, 1989.
[63] A. S. Dorfman, “Some features of the interface temperature distribution in flow over a plate,” High Temperature, vol. 9, no. 1, pp. 116-120, 1975.
[64] J. Sucec and A. M. Sawant, “Unsteady, conjugated, forced convection heat transfer in a parallel plate duct,” International Journal of Heat and Mass Transfer, vol. 27, no. 1, pp. 95-101, 1984. · doi:10.1016/0017-9310(84)90241-2
[65] J. Sucec, “Unsteady conjugated forced convective heat transfer in a duct with convection from the ambient,” International Journal of Heat and Mass Transfer, vol. 30, no. 9, pp. 1963-1970, 1987. · doi:10.1016/0017-9310(87)90254-7
[66] J. Sucec, “Exact solution for unsteady conjugated heat transfer in the thermal entrance region of a duct,” Journal of Heat Transfer, vol. 109, no. 2, pp. 295-299, 1987.
[67] J. Sucec, “Unsteady forced convection with sinusoidal duct wall generation: the conjugate heat transfer problem,” International Journal of Heat and Mass Transfer, vol. 45, no. 8, pp. 1631-1642, 2002. · Zbl 0996.76080 · doi:10.1016/S0017-9310(01)00275-7
[68] W.-M. Yan, “Transient conjugated heat transfer in channel flows with convection from the ambient,” International Journal of Heat and Mass Transfer, vol. 36, no. 5, pp. 1295-1301, 1993. · doi:10.1016/S0017-9310(05)80098-5
[69] R. O. C. Guedes, M. N. Ozisik, and R. M. Cotta, “Conjugated periodic turbulent forced convection in a parallel plate channel,” Journal of Heat Transfer, vol. 116, no. 1, pp. 40-46, 1994. · doi:10.1115/1.2910881
[70] W. K. S. Chiu, C. J. Richards, and Y. Jaluria, “Experimental and numerical study of conjugate heat transfer in a horizontal channel heated from below,” Journal of Heat Transfer, vol. 123, no. 4, pp. 688-697, 2001. · doi:10.1115/1.1372316
[71] Q. Wang and Y. Jaluria, “Three-dimensional conjugate heat transfer in a horizontal channel with discrete heating,” Journal of Heat Transfer, vol. 126, no. 4, pp. 642-647, 2004. · doi:10.1115/1.17731953
[72] A. Pozzi and M. Lupo, “The coupling of conduction with forced convection in a plane duct,” International Journal of Heat and Mass Transfer, vol. 32, no. 7, pp. 1215-1221, 1989. · doi:10.1016/0017-9310(89)90022-7
[73] M. He, A. J. Kassab, P. J. Bishop, and A. Minardi, “An iterative FDM/BEM method for the conjugate heat transfer problem-parallel plate channel with constant outside temperature,” Engineering Analysis with Boundary Elements, vol. 15, no. 1, pp. 43-50, 1995. · doi:10.1016/0955-7997(95)00007-B
[74] T. F. Lin and J. C. Kuo, “Transient conjugated heat transfer in fully developed laminar pipe flows,” International Journal of Heat and Mass Transfer, vol. 31, no. 5, pp. 1093-1102, 1988. · Zbl 0662.76103 · doi:10.1016/0017-9310(88)90097-X
[75] R. Karvinen, “Transient conjugated heat transfer to laminar flow in a tube or channel,” International Journal of Heat and Mass Transfer, vol. 31, no. 6, pp. 1326-1328, 1988. · doi:10.1016/0017-9310(88)90076-2
[76] W. M. Yan, Y. L. Tsay, and T. F. Lin, “Transient conjugated heat transfer in laminar pipe flows,” International Journal of Heat and Mass Transfer, vol. 32, no. 4, pp. 775-777, 1989. · doi:10.1016/0017-9310(89)90225-1
[77] S. Olek, E. Elias, E. Wacholder, and S. Kaizerman, “Unsteady conjugated heat transfer in laminar pipe flow,” International Journal of Heat and Mass Transfer, vol. 34, no. 6, pp. 1443-1450, 1991. · doi:10.1016/0017-9310(91)90287-O
[78] D. J. Schutte, M. M. Rahman, and A. Faghri, “Transient conjugate heat transfer in a thick-walled pipe with developing laminar flow,” Numerical Heat Transfer A, vol. 21, no. 2, pp. 163-186, 1992. · doi:10.1080/10407789108944871
[79] K.-T. Lee and W.-M. Yan, “Transient conjugated forced convection heat transfer with fully developed laminar flow in pipes,” Numerical Heat Transfer A, vol. 23, no. 3, pp. 341-359, 1993. · doi:10.1080/10407789308913676
[80] M. A. Al-Nimr and M. A. Hader, “Transient conjugated heat transfer in developing laminar pipe flow,” Journal of Heat Transfer, vol. 116, no. 1, pp. 234-236, 1994. · doi:10.1115/1.2910863
[81] J. S. Travelho and W. F. N. Santos, “Unsteady conjugate heat transfer in a circular duct with convection from the ambient and periodically varying inlet temperature,” Journal of Heat Transfer, vol. 120, no. 2, pp. 506-510, 1998. · doi:10.1115/1.2824277
[82] J. Sucec and H. Weng, “Transient conjugate convective heat transfer in a duct with wall generation,” in Proceeding of the 33rd National Heat Transfer Conference, M. K. Jensen and M. DiMarzo, Eds., ASME, Albuquerque, NM, USA, 1999, NHTC 99-61.
[83] C. P. Rahaim, A. J. Kassab, and R. J. Cavalleri, “Coupled dual reciprocity boundary element/finite volume method for transient conjugate heat transfer,” Journal of Thermophysics and Heat Transfer, vol. 14, no. 1, pp. 27-38, 2000. · doi:10.2514/2.6506
[84] J. Sucec and H.-Z. Weng, “Unsteady, conjugated duct heat transfer solution with wall heating,” Journal of Thermophysics and Heat Transfer, vol. 16, no. 1, pp. 128-134, 2002. · doi:10.2514/2.6662
[85] H. Yapici and B. Albayrak, “Numerical solutions of conjugate heat transfer and thermal stresses in a circular pipe externally heated with non-uniform heat flux,” Energy Conversion and Management, vol. 45, no. 6, pp. 927-937, 2004. · doi:10.1016/S0196-8904(03)00195-X
[86] R. A. Papoutsakis and D. Ramkrishna, “Conjugated graetz problems: general formulation and a class of solid-fluid problems,” Chemical Engineering Science, vol. 36, no. 8, pp. 1381-1391, 1981. · doi:10.1016/0009-2509(81)80172-8
[87] G. S. Barozzi and G. Pagliarini, “A method to solve conjugate heat transfer problems: the case of fully developed laminar flow in a pipe,” Journal of Heat Transfer, vol. 107, no. 1, pp. 77-83, 1985.
[88] R. M. Fithen and N. K. Anand, “Finite-element analysis of conjugate heat transfer in axisymmetric pipe flows,” Numerical Heat Transfer, vol. 13, no. 2, pp. 189-203, 1988. · doi:10.1080/10407788808913611
[89] G. Pagliarini, “Conjugate heat transfer for simultaneously developing laminar flow in a circular tube,” Journal of Heat Transfer, vol. 113, no. 3, pp. 763-766, 1991. · doi:10.1115/1.2910629
[90] A. A. Ryadno, “Coupled heat transfer in nonsteady flow about a rod bundel,” Journal of Engineering Physics and Thermophysics, vol. 55, no. 1, 1988.
[91] M. A. Al-Nimr, “A simplified approach to solving conjugate heat transfer problems in annular and dissimilar parallel plate ducts,” International Journal of Energy Research, vol. 22, no. 12, pp. 1055-1064, 1998. · doi:10.1002/(SICI)1099-114X(19981010)22:12<1055::AID-ER423>3.0.CO;2-U
[92] J. C. Jo, Y. H. Choi, and S. K. Choi, “Numerical analysis of unsteady conjugate heat transfer and thermal stress for a curved piping system subjected to thermal stratification,” Journal of Pressure Vessel Technology, vol. 125, no. 4, pp. 467-474, 2003. · doi:10.1115/1.1613947
[93] T. Sastrohartono, Y. Jaluria, and M. V. Karwe, “Numerical coupling of multiple-region simulations to study transport in a twin-screw extruder,” Numerical Heat Transfer A, vol. 25, no. 5, pp. 541-557, 1994. · doi:10.1080/10407789408955965
[94] K. Mohammad, Conjugated heat transfer from a radiating fluid in a rectangular channel, Ph.D. thesis, Akron University, Akron, Ohio, USA, 1987.
[95] T. Shigechi and Y. Lee, “Conjugate heat transfer of film pool boiling on a horizontal tube,” International Journal of Multiphase Flow, vol. 14, no. 1, pp. 35-46, 1988. · Zbl 0641.76090 · doi:10.1016/0301-9322(88)90032-8
[96] G. Pagliarini and G. S. Barozzi, “Thermal coupling in laminar flow double-pipe heat exchangers,” Journal of Heat Transfer, vol. 113, no. 3, pp. 526-534, 1991. · doi:10.1115/1.2910595
[97] A. Dorfman, “Transient heat transfer between a semi-infinite hot plate and a flowing cooling liquid film,” Journal of Heat Transfer, vol. 126, no. 2, pp. 149-154, 2004. · doi:10.1115/1.1650389
[98] J. Sucec, “Transient heat transfer between a plate and a fluid whose temperature varies periodically with time,” Journal of Heat Transfer, vol. 102, no. 1, pp. 126-131, 1980.
[99] J. Sucec, “An improved quasi-steady approach for transient conjugated forced convection problems,” International Journal of Heat and Mass Transfer, vol. 24, no. 10, pp. 1711-1722, 1981. · Zbl 0469.76056 · doi:10.1016/0017-9310(81)90079-X
[100] V. V. Sapelkin, “Conjugate problem of transient heat transfer between a laminar boundary layer and a plate containing internal heat sources,” High Temperature, vol. 19, no. 6, pp. 875-880, 1981.
[101] J. C. Friedly, “Transient response of linear conjugate heat transfer problems,” in Proceedings of the American Society of Mechanical Engineers and American Institute of Chemical Engineers, Heat Transfer Conference, Seattle, Wash, USA, July 1983.
[102] J. C. Friedly, “Transient response of a coupled conduction and convection heat transfer problem,” Journal of Heat Transfer, vol. 107, no. 1, pp. 57-62, 1985.
[103] M. K. Alkam and P. B. Butler, “Transient conjugate heat transfer between a laminar stagnation zone and a solid disk,” Journal of Thermophysics and Heat Transfer, vol. 8, no. 4, pp. 664-669, 1994. · doi:10.2514/3.596
[104] D. L. Reviznikov, “Coefficients of nonisothrmality in the problem of unsteady-state conjugate heat transfer on the surface on the blunt bodies,” High Temperature, vol. 33, no. 2, pp. 259-264, 1995.
[105] H.-P. Tan, J.-F. Luo, X.-L. Xia, and Q.-Z. Yu, “Transient coupled heat transfer in multilayer composite with one specular boundary coated,” International Journal of Heat and Mass Transfer, vol. 46, no. 4, pp. 731-747, 2003. · Zbl 1027.80507 · doi:10.1016/S0017-9310(02)00322-8
[106] E. Radenac, J. Gressier, P. Millan, and A. Giovannini, “A conservative numerical method for transient conjugate heat transfer,” in Proceedings of the International Conference on Computational Methods for Coupled Problems in Science and Engineering, Santorin, Greece, May 2005. · Zbl 1027.80507 · doi:10.1016/S0017-9310(02)00322-8
[107] O. A. Grechannyy, A. S. Dorfman, and V. G. Novikov, “Conjugate heat transfer in flow over a continuously moving surface,” High Temperature, vol. 21, no. 5, pp. 32-35, 1981.
[108] A. S. Dorfman and V. G. Novikov, “Heat transfer from a continuously moving surface to surroundings,” High Temperature, vol. 20, no. 6, pp. 50-54, 1980.
[109] O. A. Grechannyy, A. A. Dolinsky, and A. S. Dorfman, “Conjugate heat and mass transfer in continuous processes of convective draying of thin bodies,” Prom Teplotekhnika, vol. 9, no. 4, pp. 27-37, 1987 (Russian).
[110] K. Chida and Y. Katto, “Study on conjugate heat transfer by vectorial dimensional analysis,” International Journal of Heat and Mass Transfer, vol. 19, no. 5, pp. 453-460, 1976. · Zbl 0325.76126 · doi:10.1016/0017-9310(76)90157-5
[111] B. H. Kang, Y. Jaluria, and M. V. Karwe, “Numerical simulation of conjugate transport from a continuous moving plate in materials processing,” Numerical Heat Transfer A, vol. 19, no. 2, pp. 151-176, 1991. · doi:10.1080/10407789108944843
[112] P. Lin and Y. Jaluria, “Conjugate transport in polymer melt flow through extrusion dies,” Polymer Engineering and Science, vol. 37, no. 9, pp. 1582-1595, 1997. · doi:10.1002/pen.11806
[113] Y. Jaluria, “Transport from continuously moving materials undergoing thermal processing,” in Annual Review of Heat and Mass Transfer, C. L. Tien, Ed., vol. 4, chapter 4, Hemisphere, Taylor and Francis, Washington, DC, USA, 1992.
[114] M. Kumari and G. Nath, “Conjugate mixed convection transport from a moving vertical plate in a non-Newtonian fluid,” International Journal of Thermal Sciences, vol. 45, no. 6, pp. 607-614, 2006. · doi:10.1016/j.ijthermalsci.2005.06.010
[115] A. A. Dolinskiy, A. S. H. Dorfman, and B. V. Davydenko, “Conjugate heat and mass transfer in continuous processes of convective drying,” International Journal of Heat and Mass Transfer, vol. 34, no. 11, pp. 2883-2889, 1991. · Zbl 0729.76573 · doi:10.1016/0017-9310(91)90248-D
[116] O. A. Grechannyy, A. A. Dolinskiy, and A. Sh. Sorfman, “Flow, heat and mass transfer in the boundary layer on a continuously moving porous sheet,” Heat Transfer. Soviet Research, vol. 20, no. 1, pp. 52-64, 1988.
[117] O. A. Grechannyy, A. A. Dolinskiy, and A. Sh. Dorfman, “Effect of nonuniform distribution of temperature and concentration differences on heat and mass transfer from and to a continuously moving porous plate,” Heat Transfer. Soviet Research, vol. 20, no. 3, pp. 355-368, 1988.
[118] L. M. Nikitina, Tables of the Mass Transfer Coefficients of Moist Materials, Nauka i Tekhnika, Minsk, Russia, 1964.
[119] E. J. Davis and S. Venkatesh, “The solution of conjugated multiphase heat and mass transfer problems,” Chemical Engineering Science, vol. 34, no. 6, pp. 775-787, 1979. · doi:10.1016/0009-2509(79)85133-7
[120] L. S. Oliveira, M. Fortes, and K. Haghighi, “Conjugate analysis of natural convective drying of biological materials,” Drying Technology, vol. 12, no. 5, pp. 1167-1190, 1994. · doi:10.1080/07373939408960994
[121] L. S. Oliveira and K. Haghighi, “A new unified a posteriori error estimator for adaptive finite element analysis of coupled transport problems,” International Journal of Heat and Mass Transfer, vol. 38, no. 15, pp. 2809-2819, 1995. · Zbl 0924.73235 · doi:10.1016/0017-9310(95)00022-2
[122] L. S. Oliveira and K. Haghighi, “Conjugate heat and mass transfer in convective drying of porous media,” Numerical Heat Transfer A, vol. 34, no. 2, pp. 105-117, 1998. · doi:10.1080/10407789808913980
[123] L. S. Oliveira and K. Haghighi, “Conjugate heat and mass transfer in convective drying of multiparticle systems-part I: theoretical considerations,” Drying Technology, vol. 16, no. 3-5, pp. 433-461, 1998. · doi:10.1080/07373939808917418
[124] L. S. Oliveira and K. Haghighi, “Conjugate heat and mass transfer in convective drying of multiparticle systems-part II: soybean drying,” Drying Technology, vol. 16, no. 3-5, pp. 463-483, 1998. · doi:10.1080/07373939808917419
[125] K. Murugesan, H. N. Suresh, K. N. Seetharamu, P. A. Aswatha Narayana, and T. Sundararajan, “A theoretical model of brick drying as a conjugate problem,” International Journal of Heat and Mass Transfer, vol. 44, no. 21, pp. 4075-4086, 2001. · Zbl 1116.76457 · doi:10.1016/S0017-9310(01)00065-5
[126] J. Wang, N. Christakis, M. K. Patel, M. Cross, and M. C. Leaper, “A computational model of coupled heat and moisture transfer with phase change in granular sugar during varying environmental conditions,” Numerical Heat Transfer A, vol. 45, no. 8, pp. 751-776, 2004. · doi:10.1080/10407780490424280
[127] D. Kulasiri and I. Woodhead, “On modelling the drying of porous materials: analytical solutions to coupled partial differential equations governing heat and moisture transfer,” Mathematical Problems in Engineering, no. 3, pp. 275-291, 2005. · Zbl 1200.76184 · doi:10.1155/MPE.2005.275
[128] J. Eriksson, S. Ormarsson, and H. Petersson, “Finite-element analysis of coupled nonlinear heat and moisture transfer in wood,” Numerical Heat Transfer A, vol. 50, no. 9, pp. 851-864, 2006. · doi:10.1080/10407780600669282
[129] C.-T. Liauh, R. G. Hills, and R. B. Roemer, “Comparison of the adjoint and influence coefficient methods for solving the inverse hyperthermia problem,” Journal of Biomechanical Engineering, vol. 115, no. 1, pp. 63-71, 1993.
[130] A. Shanmugasundaram, V. Ponnappan, R. Leland, and J. E. Beam, “Conjugate heat transfer in Ventun-type cooling system-numerical and experimental studies,” in Proceedings of the 30th Thermophysics Conference, San Diego, Calif, USA, June 1995.
[131] R. Viswanath and Y. Jaluria, “Numerical study of conjugate transient solidification in an enclosed region,” Numerical Heat Transfer A, vol. 27, no. 5, pp. 519-536, 1995.
[132] I. Demirdzic and S. Muzaferija, “Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology,” Computer Methods in Applied Mechanics and Engineering, vol. 125, no. 1-4, pp. 235-255, 1995.
[133] P. Baiocco and P. Bellomi, “A coupled thermo-ablative and fluid dynamic analysis for numerical application to propellant rockets,” in Proceedings of the 31st Thermophysics Conference, New Orleans, La, USA, June 1996.
[134] H. Li, C. K. Hsieh, and D. Y. Goswami, “Conjugate heat transfer analysis of fluid flow in a phase-change energy storage unit,” International Journal of Numerical Methods for Heat and Fluid Flow, vol. 6, no. 3, pp. 77-90, 1996. · Zbl 0969.76557 · doi:10.1108/EUM0000000004105
[135] K. D. Cole, “Conjugate heat transfer from a small heated strip,” International Journal of Heat and Mass Transfer, vol. 40, no. 11, pp. 2709-2719, 1997. · Zbl 0922.76144 · doi:10.1016/S0017-9310(96)00232-3
[136] G. Z. Yang and N. Zabaras, “An adjoint method for the inverse design of solidification processes with natural convection,” International Journal for Numerical Methods in Engineering, vol. 42, no. 6, pp. 1121-1144, 1998. · Zbl 0912.76036 · doi:10.1002/(SICI)1097-0207(19980730)42:6<1121::AID-NME403>3.0.CO;2-8
[137] G. Z. Yang and N. Zabaras, “The adjoint method for an inverse design problem in the directional solidification of binary alloys,” Journal of Computational Physics, vol. 140, no. 2, pp. 432-452, 1998. · Zbl 0926.65097 · doi:10.1006/jcph.1998.5893
[138] W. K. S. Chiu and Y. Jaluria, “Effect of buoyancy, susceptor motion, and conjugate transport in chemical vapor deposition systems,” Journal of Heat Transfer, vol. 121, no. 3, pp. 757-761, 1999.
[139] D. L. Sondak, “Simulation of coupled unsteady flow and heat conduction in turbine stage,” in Proceedings of 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Los Angeles, Calif, USA, 1999.
[140] G. Croce, “A conjugate heat transfer procedure for gas turbine blades,” Annals of the New York Academy of Sciences, vol. 934, pp. 273-280, 2001.
[141] A. J. Nowak, R. A. Białecki, A. Fic, G. Wecel, L. C. Wrobel, and B. Sarler, “Coupling of conductive, convective and radiative heat transfer in Czochralski crystal growth process,” Computational Materials Science, vol. 25, no. 4, pp. 570-576, 2002. · doi:10.1016/S0927-0256(02)00336-1
[142] A. K. Alekseev and I. M. Navon, “On estimation of temperature uncertainty using the second order adjoint problem,” International Journal of Computational Fluid Dynamics, vol. 16, no. 2, pp. 113-117, 2002. · Zbl 1002.80018 · doi:10.1080/10618560290017185
[143] A. Kassab, E. Divo, J. Heidmann, E. Steinthorsson, and F. Rodriguez, “BEM/FVM conjugate heat transfer analysis of a three-dimensional film cooled turbine blade,” International Journal of Numerical Methods for Heat and Fluid Flow, vol. 13, no. 5-6, pp. 581-610, 2003. · Zbl 1183.76808 · doi:10.1108/09615530310482463
[144] O. Polat and E. Bilgen, “Conjugate heat transfer in inclined open shallow cavities,” International Journal of Heat and Mass Transfer, vol. 46, no. 9, pp. 1563-1573, 2003. · Zbl 1032.76531 · doi:10.1016/S0017-9310(02)00427-1
[145] H. J. Kim, S. K. Kim, and W. I. Lee, “Flow and heat transfer analysis during tape layup process of APC-2 prepregs,” Journal of Thermoplastic Composite Materials, vol. 17, no. 1, pp. 5-12, 2004. · doi:10.1177/0892705704033339
[146] H. Lai, H. Zhang, and Y. Yan, “Numerical study of heat and mass transfer in rising inert bubbles using a conjugate flow model,” Numerical Heat Transfer A, vol. 46, no. 1, pp. 79-98, 2004. · doi:10.1080/10407780490457400
[147] E. Bilgen and T. Yamane, “Conjugate heat transfer in enclosures with openings for ventilation,” Heat and Mass Transfer, vol. 40, no. 5, pp. 401-411, 2004. · doi:10.1007/s00231-003-0418-z
[148] Z. Liu, R. Wan, K. Muldrew, S. Sawchuk, and J. Rewcastle, “A level set variational formulation for coupled phase change/mass transfer problems: application to freezing of biological systems,” Finite Elements in Analysis and Design, vol. 40, no. 12, pp. 1641-1663, 2004.
[149] E. Reby, B. V. Prasad, S. S. Murthy, and N. Gupta, “Conjugate heat transfer in an arbitrary shaped cavity with a rotating disk,” Heat Transfer Engineering, vol. 25, no. 8, pp. 69-79, 2004.
[150] E. Papanicolaou and V. Belessiotis, “Transient hydrodynamic phenomena and conjugate heat transfer during cooling of water in an underground thermal storage tank,” Journal of Heat Transfer, vol. 126, no. 1, pp. 84-96, 2004. · doi:10.1115/1.1643907
[151] B. Zhong, “LES and hybrid LES/RANS simulations for conjugate heat transfer over a matrix,” in Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nev, USA, January 2005.
[152] M. Hribersek, B. Sirok, Z. Zunic, and L. Skerget, “Numerical computation of turbulent conjugate heat transfer in air heater,” Strojniski Vestnik-Journal of Mechanical Engineering, vol. 51, no. 7-8, pp. 470-475, 2005.
[153] L.-X. Wang and R. V. N. Melnik, “Differential-algebraic approach to coupled problems of dynamic thermoelasticity,” Applied Mathematics and Mechanics, vol. 27, no. 9, pp. 1185-1196, 2006. · Zbl 1359.74063 · doi:10.1007/s10483-006-0905-z
[154] R. Ye, T. Ishigaki, H. Taguchi, S. Ito, A. B. Murphy, and H. Lange, “Characterization of the behavior of chemically reactive species in a nonequilibrium inductively coupled argon-hydrogen thermal plasma under pulse-modulated operation,” Journal of Applied Physics, vol. 100, no. 10, pp. 1-8, 2006. · doi:10.1063/1.2364623
[155] V. Rath, A. Wolf, and H. M. Bucker, “Joint three-dimensional inversion of coupled groundwater flow and heat transfer based on automatic differentiation: sensitivity calculation, verification, and synthetic examples,” Geophysical Journal International, vol. 167, no. 1, pp. 453-466, 2006. · doi:10.1111/j.1365-246X.2006.03074.x
[156] S.-Y. Yoo and Y. Jaluria, “Conjugate heat transfer in an optical fiber coating process,” Numerical Heat Transfer A, vol. 51, no. 2, pp. 109-127, 2007. · Zbl 1124.80386 · doi:10.1080/10407780600710342
[157] V. A. Bityurin, A. N. Bocharov, A. V. Zhelnin, and G. A. Lyubimov, “Two dimensional thermal and electric effects on a compound wall of an MHD generator under conditions of coupled heat transfer,” High Temperature, vol. 26, no. 3, pp. 445-454, 1988.
[158] H. D. Nguyen and J. N. Chung, “Conjugate heat transfer from a translating drop in an electric field at low Peclet number,” International Journal of Heat and Mass Transfer, vol. 35, no. 2, pp. 443-456, 1992. · Zbl 0748.76108 · doi:10.1016/0017-9310(92)90281-V
[159] A. G. Fedorov and R. Viskanta, “A numerical simulation of conjugate heat transfer in an electronic package formed by embedded discrete heat sources in contact with a porous heat sink,” Journal of Electronic Packaging, vol. 119, no. 1, pp. 8-16, 1997.
[160] J.-J. Hwang, “Conjugate heat transfer for developing flow over multiple discrete thermal sources flush-mounted on the wall,” Journal of Heat Transfer, vol. 120, no. 2, pp. 510-514, 1998.
[161] A. G. Fedorov and R. Viskanta, “Three-dimensional conjugate heat transfer in the microchannel heat sink for electronic packaging,” International Journal of Heat and Mass Transfer, vol. 43, no. 3, pp. 399-415, 2000. · Zbl 0969.80009 · doi:10.1016/S0017-9310(99)00151-9
[162] Z. Cheng and M. Paraschivoiu, “Parallel computations of finite element output bounds for conjugate heat transfer,” Finite Elements in Analysis and Design, vol. 39, no. 7, pp. 581-597, 2003. · doi:10.1016/S0168-874X(02)00129-4
[163] G. Iaccarino and S. Moreau, “Natural and forced conjugate heat transfer in complex geometries on cartesian adapted grids,” Journal of Fluids Engineering, vol. 128, no. 4, pp. 838-846, 2006. · doi:10.1115/1.2201625
[164] R. T. Tenchev, L. Y. Li, and J. A. Purkiss, “Finite element analysis of coupled heat and moisture transfer in concrete subjected to fire,” Numerical Heat Transfer A, vol. 39, no. 7, pp. 685-710, 2001.
[165] L. Y. Li, J. A. Purkiss, and R. T. Tenchev, “An engineering model for coupled heat and mass transfer analysis in heated concrete,” Proceedings of the Institution of Mechanical Engineers C, vol. 216, no. 2, pp. 213-224, 2002. · doi:10.1243/0954406021525142
[166] M. P. Deru and A. T. Kirkpatrick, “Ground-coupled heat and moisture transfer from buildings-part 1: analysis and modeling,” Journal of Solar Energy Engineering, vol. 124, no. 1, pp. 10-16, 2002.
[167] M. P. Deru and A. T. Kirkpatrick, “Ground-coupled heat and moisture transfer from buildings-part 2: application,” Journal of Solar Energy Engineering, vol. 124, no. 1, pp. 17-21, 2002.
[168] A. Al-Anzi and M. Krarti, “Local/global analysis applications to ground-coupled heat transfer,” International Journal of Thermal Sciences, vol. 42, no. 9, pp. 871-880, 2003. · doi:10.1016/S1290-0729(03)00059-0
[169] S. E. Potter and C. P. Underwood, “A modelling method for conjugate heat transfer and fluid flow in building spaces,” Building Services Engineering Research and Technology, vol. 25, no. 2, pp. 111-125, 2004. · doi:10.1191/0143624404bt092oa
[170] X. Li, R. Li, and B. A. Schrefler, “A coupled chemo-thermo-hygro-mechanical model of concrete at high temperature and failure analysis,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 30, no. 7, pp. 635-681, 2006. · Zbl 1140.74438 · doi:10.1002/nag.495
[171] C. T. Davie, C. J. Pearce, and N. Bicanic, “Coupled heat and moisture transport in concrete at elevated temperatures-effects of capillary pressure and adsorbed water,” Numerical Heat Transfer A, vol. 49, no. 8, pp. 733-763, 2006. · doi:10.1080/10407780500503854
[172] N. Nitin and M. V. Karwe, “Numerical simulation and experimental investigation of conjugate heat transfer between a turbulent hot air jet impinging on a cookie-shaped object,” Journal of Food Science, vol. 69, no. 2, pp. 59-65, 2004.
[173] S. Y. Ho, “A turbulent conjugate heat-transfer model for freezing of food products,” Journal of Food Science, vol. 69, no. 5, pp. E224-E231, 2004.
[174] M. B. Hsu and R. E. Nickell, “Coupled convective and conductive heat transfer by finite element method,” Tech. Rep. AD 0771930, Department of Engineering, Brown University, Providence, RI, USA, 1973.
[175] M. He, P. J. Bishop, A. J. Kassab, and A. Minardi, “A coupled FDM/BEM solution for the conjugate heat transfer problem,” Numerical Heat Transfer, Part B-Fundamentals, vol. 28, no. 2, pp. 139-154, 1995. · doi:10.1080/10407799508928826
[176] P. Dominiquelgnat and L. Florin, “An adaptive finite element method for conjugate heat transfer,” in Proceedings of the 33rd Aerospace Science Meeting and Exhibit, Reno, Nev, USA, January 1995.
[177] J. Blobner, M. Hribersek, and G. Kuhn, “Dual reciprocity BEM-BDIM technique for conjugate heat transfer computations,” Computer Methods in Applied Mechanics and Engineering, vol. 190, no. 8-10, pp. 1105-1116, 2000. · Zbl 0973.76062 · doi:10.1016/S0045-7825(99)00468-5
[178] E. Divo, E. Steinthorsson, A. J. Kassab, and R. Bialecki, “An iterative BEM/FVM protocol for steady-state multi-dimensional conjugate heat transfer in compressible flows,” Engineering Analysis with Boundary Elements, vol. 26, no. 5, pp. 447-454, 2002. · Zbl 0995.74512 · doi:10.1016/S0955-7997(01)00106-0
[179] R. A. Bialecki and G. Wecel, “Solution of conjugate radiation convection problems by a BEM FVM technique,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 84, no. 4, pp. 539-550, 2004. · doi:10.1016/S0022-4073(03)00270-X
[180] C. P. Rahaim and R. J. Cavalleri, “Coupled finite volume and boundary element analysis of conjugate heat transfer problem,” in Proceedings of the Thermophisics Conference, New Orlean, La, USA, June 1996.
[181] N. Wansophark, A. Malatip, and P. Dechaumphai, “Streamline upwind finite element method for conjugate heat transfer problems,” Acta Mechanica Sinica, vol. 21, no. 5, pp. 436-443, 2005. · Zbl 1200.76123 · doi:10.1007/s10409-005-0060-8
[182] A. Horvat, B. Mavko, and I. Catton, “The Galerkin method solution of the conjugate heat transfer,” in Proceeding of the ASME-ZSIS International Thermal Science Seminar II, Bled, Slovenia, June 2004.
[183] K.-H. Kao and M.-S. Liou, “On the application of Chimera/unstructured hybrid grids for conjugate heat transfer,” in Proceedings of the ASMF Turbo Expo/96, Land, Seaand Air sponsored by the American Mechanical Engineers, NASA, Birminham, UK, June 1996.
[184] X. Chen and P. Han, “A note on the solution of conjugate heat transfer problems using SIMPLE-like algorithms,” International Journal of Heat and Fluid Flow, vol. 21, no. 4, pp. 463-467, 2000. · doi:10.1016/S0142-727X(00)00028-X
[185] K. Momose, K. Sasoh, and H. Kimoto, “Thermal boundary condition effects forced convection heat transfer. (Application of numerical solution of adjoint problem),” JSME International Journal, Series B, vol. 42, no. 2, pp. 293-299, 1999.
[186] S. R. Mathur and J. Y. Murthy, “Acceleration of anisotropic scattering computations using coupled ordinates method (COMET),” Journal of Heat Transfer, vol. 123, no. 3, pp. 607-612, 2001. · doi:10.1115/1.1370506
[187] K. Momose, M. Ueda, and H. Kimoto, “Influence of thermal and flow boundary perturbations on convection heat transfer characteristics: numerical analysis based on adjoint formulation,” Heat Transfer: Asian Research, vol. 32, no. 1, pp. 1-12, 2003. · doi:10.1002/htj.10065
[188] N. Mendes and C. Philippi, “Multitridiagonl-matrix algorithm for coupled heat transfer in porous media: stability analysis and computational performance,” Journal of Porous Media, vol. 7, no. 3, pp. 193-211, 2004. · Zbl 1074.76580 · doi:10.1615/JPorMedia.v7.i3.40
[189] B. Sunden, “A coupled conduction-convection problem at low Reynolds number flow,” in Proceedings of the 1st International Conference on Numerical Methods in Thermal Problems, pp. 412-422, Swansea, UK, July 1979. · Zbl 0439.76074
[190] A. G. Eliseev and I. G. Zaltman, “Solution of coupled heat transfer problem,” High Temperature, vol. 17, pp. 86-102, 1979.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.