×

Analytical and empirical determination of thermal performance of louvered heat exchanger - effects of air flow statistics. (English) Zbl 1205.80024

Summary: Using the basic equations for modeling heat transfer through heat exchangers, an analytical approach is developed to determining the thermal performance of cross-flow air-cooled heat exchangers as a function of the flow statistics of the upstream cooling air. A two-dimensional computational code is also developed to calculate heat-exchanger performance in relation to the airflow topology upstream of the heat exchanger induced by its integration in complex environments such as the car underhood compartment. The analytical and numerical results show satisfactory agreement: the mean relative error in heat exchanger thermal performance determined by the numerical computation and the analytical approach is about 0.5%.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Sanders, P. A.; Thole, K. A.: Effects of winglets to augment tube wall heat transfer in louvered fin heat exchangers, Int. J. Heat mass transfer 49, 4058-4069 (2006) · Zbl 1108.80321 · doi:10.1016/j.ijheatmasstransfer.2006.03.036
[2] Zhang, X.; Tafti, D. K.: Flow efficiency in multi-louvered fins, Int. J. Heat mass transfer 46, 1737-1750 (2003)
[3] Torii, K.; Kwak, K. M.; Nishino, K.: Heat transfer enhancement accompanying pressure-loss reduction with winglet-type vortex generators for fin-tube heat exchangers, Int. J. Heat mass transfer 45, 3795-3801 (2002)
[4] Hasan, M. I.; Rageb, A. A.; Yaghoubi, M.; Homayoni, H.: Influence of channel geometry on the performance of a counterflow microchannel heat exchanger, Int. J. Therm. sci. 48, 1607-1618 (2009)
[5] Wen, M. Y.; Ho, C. Y.: Heat-transfer enhancement in fin-and-tube heat exchanger with improved fin design, Appl. therm. Eng. 29, 1050-1057 (2009)
[6] Zhang, P.; Hrnjak, P. S.: Air-side performance evaluation of three types of heat exchangers in dry, wet and periodic frosting conditions, Int. J. Refrig. 32, 911-921 (2009)
[7] Joardar, A.; Jacobi, A. M.: Heat transfer enhancement by winglet-type vortex generator arrays in compact plain-fin-and-tube heat exchangers, Int. J. Refrig. 31, 87-97 (2008)
[8] Elyyan, M. A.; Tafti, D. K.: A novel split-dimple interrupted fin configuration for heat transfer augmentation, Int. J. Heat mass transfer 52, 1561-1572 (2009) · Zbl 1157.80324 · doi:10.1016/j.ijheatmasstransfer.2008.07.046
[9] Lawson, M. J.; Thole, K. A.: Heat transfer augmentation along the tube wall of a louvered fin heat exchanger using practical delta winglets, Int. J. Heat mass transfer 51, 2346-2360 (2008)
[10] Song, C. H.; Lee, D. Y.; Ro, S. T.: Cooling enhancement in an air-cooled finned heat exchanger by thin water film evaporation, Int. J. Heat mass transfer 46, 1241-1249 (2003) · Zbl 1032.76692 · doi:10.1016/S0017-9310(02)00405-2
[11] Xie, G. N.; Sunden, B.; Wang, Q. W.: Optimization of compact heat exchangers by a genetic algorithm, Appl. therm. Eng. 28, 895-906 (2008)
[12] Doodman, A. R.; Fesanghray, M.; Hosseini, R.: A robust stochastic approach for design optimization of air-cooled heat exchangers, Appl. energy 86, 1240-1245 (2009)
[13] Guo, J.; Xu, M.; Cheng, L.: The application of field synergy number in shell-and-tube heat exchanger optimization design, Appl. energy 86, 2079-2087 (2009)
[14] Fesanghary, M.; Damangir, E.; Soleimani, I.: Design optimization of shell and tube heat exchanger using global sensitivity analysis and harmony search algorithm, Appl. therm. Eng. 29, 1026-1031 (2009)
[15] Mishra, M.; Das, P. K.; Sarangi, S.: Second law based optimisation of crossflow plate-fin heat exchanger design using genetic algorithm, Appl. therm. Eng. 29, 2983-2989 (2009)
[16] Wang, C. C.; Lin, Y. T.; Lee, C. J.: Heat and momentum transfer for compact louvered fin-and-tube heat exchangers in wet conditions, Int. J. Heat mass transfer 43, 3443-3452 (2000)
[17] Malapure, V. P.; Mitra, S. K.; Bhattacharya, A.: Numerical investigation of fluid flow and heat transfer over louvered fins in compact heat exchanger, Int. J. Therm. sci. 46, 199-211 (2007)
[18] Xia, Y.; Jacobi, A. M.: A model for predicting the thermal-hydraulic performance of louvered-fin, flat-tube heat exchangers under frosting conditions, Int. J. Refrig. 33, 321-333 (2010)
[19] Pirompugd, W.; Wang, C. C.; Wongwises, S.: A review on reduction method for heat and mass transfer characteristics of fin-and-tube heat exchangers under dehumidifying conditions, Int. J. Heat mass transfer 52, 2370-2378 (2009) · Zbl 1158.80310 · doi:10.1016/j.ijheatmasstransfer.2008.10.019
[20] He, Y. L.; Tao, W. Q.; Song, F. Q.; Zhang, W.: Three-dimensional numerical study of heat transfer characteristics of plain plate fin-and-tube heat exchangers from viewpoint of field synergy principle, Int. J. Heat fluid flow 26, 459-473 (2005)
[21] Tao, Y. B.; He, Y. L.; Huang, J.; Wu, Z. G.; Tao, W. Q.: Numerical study of local heat transfer coefficient and fin efficiency of wavy fin-and-tube heat exchangers, Int. J. Therm. sci. 46, 768-778 (2007) · Zbl 1124.80369
[22] Nuntaphan, A.; Vithayasai, S.; Kiatsiriroat, T.; Wang, C. C.: Effect of inclination angle on free convection thermal performance of louver finned heat exchanger, Int. J. Heat mass transfer 50, 361-366 (2007)
[23] Oliet, C.; Oliva, A.; Castro, J.; Pérez-Segarra, C. D.: Parametric studies on automotive radiators, Appl. therm. Eng. 27, 2033-2043 (2007)
[24] Qi, Z. G.; Chen, J. P.; Chen, Z. J.: Parametric study on the performance of a heat exchanger with corrugated louvered fins, Appl. therm. Eng. 27, 539-544 (2007)
[25] Witry, A.; Al-Hajeri, M. H.; Bondok, A. A.: Thermal performance of automotive aluminium plate radiator, Appl. therm. Eng. 25, 1207-1218 (2005)
[26] Carluccio, E.; Starace, G.; Ficarella, A.; Laforgia, D.: Numerical analysis of a cross-flow compact heat exchanger for vehicle applications, Appl. therm. Eng. 25, 1995-2013 (2005)
[27] A. Waschle, Numerical methods, three-dimensional, in: J. Wiedemann, W.H. Hucho (Eds.), Progress in Vehicle Aerodynamics II Thermo-Management, Expertverlag, Stuttgart, 2002, pp. 115 – 128.
[28] Zhang, L. Z.: Flow maldistribution and thermal performance deterioration in a cross-flow air to air heat exchanger with plate-fin cores, Int. J. Heat mass transfer 52, 4500-4509 (2009) · Zbl 1175.80014 · doi:10.1016/j.ijheatmasstransfer.2009.03.049
[29] Shaji, K.; Das, S. K.: The effect of flow maldistribution on the evaluation of axial dispersion and thermal performance during the single-blow testing of plate heat exchangers, Int. J. Heat mass transfer 53, 1591-1602 (2010) · Zbl 1183.80058 · doi:10.1016/j.ijheatmasstransfer.2009.10.048
[30] Srihari, N.; Rao, B. P.; Sunden, B.; Das, S. K.: Transient response of plate heat exchangers considering effect of flow maldistribution, Int. J. Heat mass transfer 48, 3231-3243 (2005) · Zbl 1189.80028 · doi:10.1016/j.ijheatmasstransfer.2005.02.032
[31] Cabezas-Gòmez, L.; Navarro, H. A.; De Godoy, S. M.; Campo, A.; Saiz-Jabardo, J. M.: Thermal characterization of a cross-flow heat exchanger with a new flow arrangement, Int. J. Therm. sci. 48, 2165-2170 (2009)
[32] A. Jerhamre, A. Jonson, Development and validation of coolant temperature and cooling air flow CFD simulations at Volvo cars, in: Proceedings of the 2004 SAE World Congress, Detroit, Michigan, USA, 2004, 2004-01-0051.
[33] A. Waschle, Numerische Simulation der Stromung durch einen Pkw-Kuhler und Berechnung der Warmeubertragung, Ph.D. Thesis, DaimlerChrysler AG, Stuttgart, 2000.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.