×

A bubble-based drag model at the local-grid level for Eulerian simulation of bubbling fluidized beds. (English) Zbl 1400.76088

Summary: A bubble-based drag model at the local-grid level is proposed to simulate gas-solid flows in bubbling fluidized beds of Geldart A particles. In this model, five balance equations are derived from the mass and the momentum conservation. This set of equations along with necessary correlations for bubble diameter and voidage of emulsion phase is solved to obtain seven local structural parameters (\(u_{g e}\), \(u_{p e}\), \(\varepsilon_e\), \(\delta_b\), \(u_b\), \(d_b\), and \(a_b\)) which describe heterogeneous flows of bubbling fluidized beds. The modified drag coefficient obtained from the above-mentioned structural parameters is then incorporated into the two-fluid model to simulate the hydrodynamics of Geldart A particles in a lab-scale bubbling fluidized bed. The comparison between experimental and simulation results for the axial and radial solids concentration profiles is promising.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kunii, D.; Levenspiel, O., Fluidization Engineering, (1991), New York, NY, USA: John Wiley & Sons, New York, NY, USA
[2] Yang, Y. R.; Yang, J. Q.; Chen, W.; Rong, S. X., Instability analysis of the fluidized bed for ethylene polymerization with condensed mode operation, Industrial and Engineering Chemistry Research, 41, 10, 2579-2584, (2002) · doi:10.1021/ie001121a
[3] Davidson, J. F., Symposium on fluidization—discussion, Transactions of the Institution of Chemical Engineers, 39, 230-232, (1961)
[4] Jackson, R., The mechanics of fluidized beds: the motion of fully developed bubbles, Transactions of the Institution of Chemical Engineers, 41, 22-28, (1963)
[5] Kunii, D.; Levenspiel, O., Bubbling bed model for kinetic processes in fluidized beds: gas-solid mass and heat transfer and catalytic reactions, Industrial & Engineering Chemistry Process Design and Development, 7, 4, 481-492, (1968) · doi:10.1021/i260028a001
[6] Rowe, P. N., Prediction of bubble size in a gas fluidised bed, Chemical Engineering Science, 31, 4, 285-288, (1976) · doi:10.1016/0009-2509(76)85073-7
[7] Toomey, R. D.; Johnstone, H. F., Gaseous fluidization of solid particles, Chemical Engineering Progress, 48, 220-226, (1952)
[8] Bokkers, G. A.; Laverman, J. A.; van Sint Annaland, M.; Kuipers, J. A. M., Modelling of large-scale dense gas-solid bubbling fluidised beds using a novel discrete bubble model, Chemical Engineering Science, 61, 17, 5590-5602, (2006) · doi:10.1016/j.ces.2006.04.009
[9] Krishna, R.; Van Baten, J. M., Using CFD for scaling up gas-solid bubbling fluidised bed reactors with Geldart A powders, Chemical Engineering Journal, 82, 1–3, 247-257, (2001) · doi:10.1016/s1385-8947(00)00369-7
[10] Lu, B.; Zhang, N.; Wang, W.; Li, J.; Chiu, J. H.; Kang, S. G., 3-D full-loop simulation of an industrial-scale circulating fluidized-bed boiler, AIChE Journal, 59, 4, 1108-1117, (2013) · doi:10.1002/aic.13917
[11] Nikolopoulos, A.; Nikolopoulos, N.; Charitos, A.; Grammelis, P.; Kakaras, E.; Bidwe, A. R.; Varela, G., High-resolution 3-D full-loop simulation of a CFB carbonator cold model, Chemical Engineering Science, 90, 137-150, (2013) · doi:10.1016/j.ces.2012.12.007
[12] Patil, D. J.; van Sint Annaland, M.; Kuipers, J. A. M., Critical comparison of hydrodynamic models for gas-solid fluidized beds-part I: bubbling gas-solid fluidized beds operated with a jet, Chemical Engineering Science, 60, 1, 57-72, (2005) · doi:10.1016/j.ces.2004.07.059
[13] van Wachem, B. G. M.; Schouten, J. C.; Krishna, R.; van den Bleek, C. M., Eulerian simulations of bubbling behaviour in gas-solid fluidised beds, Computers and Chemical Engineering, 22, S299-S306, (1998) · doi:10.1016/s0098-1354(98)00068-4
[14] Zhang, N.; Lu, B.; Wang, W.; Li, J., 3D CFD simulation of hydrodynamics of a 150MWe circulating fluidized bed boiler, Chemical Engineering Journal, 162, 2, 821-828, (2010) · doi:10.1016/j.cej.2010.06.033
[15] Ding, J.; Gidaspow, D., Bubbling fluidization model using kinetic theory of granular flow, AIChE Journal, 36, 4, 523-538, (1990) · doi:10.1002/aic.690360404
[16] Gelderbloom, S. J.; Gidaspow, D.; Lyczkowski, R. W., CFD simulations of bubbling/collapsing fluidized beds for three geldart groups, AIChE Journal, 49, 4, 844-858, (2003) · doi:10.1002/aic.690490405
[17] Gidaspow, D., Multiphase Flow and Fluidization: Continuum and kInetic Theory Descriptions, (1994), Boston, Mass, USA: Academic Press, Boston, Mass, USA · Zbl 0789.76001
[18] Li, T.; Grace, J.; Bi, X., Study of wall boundary condition in numerical simulations of bubbling fluidized beds, Powder Technology, 203, 3, 447-457, (2010) · doi:10.1016/j.powtec.2010.06.005
[19] Motlagh, A. H. A.; Grace, J. R.; Salcudean, M.; Hrenya, C. M., New structure-based model for Eulerian simulation of hydrodynamics in gas-solid fluidized beds of Geldart group ‘A’ particles, Chemical Engineering Science, 120, 22-36, (2014) · doi:10.1016/j.ces.2014.08.042
[20] Shi, Z.; Wang, W.; Li, J., A bubble-based EMMS model for gas-solid bubbling fluidization, Chemical Engineering Science, 66, 22, 5541-5555, (2011) · doi:10.1016/j.ces.2011.07.020
[21] Ergun, S., Fluid flow through packed columns, Chemical Engineering Progress, 48, 89-94, (1952)
[22] Wen, C. Y.; Yu, Y. H., Mechanics of fluidization, Chemical Engineering Progress Symposium Series, 62, 100-111, (1966)
[23] Benyahia, S.; Sundaresan, S., Do we need sub-grid scale corrections for both continuum and discrete gas-particle flow models?, Powder Technology, 220, 2-6, (2012) · doi:10.1016/j.powtec.2011.10.052
[24] Sundaresan, S., Modeling the hydrodynamics of multiphase flow reactors: current status and challenges, AIChE Journal, 46, 6, 1102-1105, (2000) · doi:10.1002/aic.690460602
[25] Zhang, D. Z.; VanderHeyden, W. B., The effects of mesoscale structures on the macroscopic momentum equations for two-phase flows, International Journal of Multiphase Flow, 28, 5, 805-822, (2002) · Zbl 1136.76693 · doi:10.1016/s0301-9322(02)00005-8
[26] Schneiderbauer, S.; Puttinger, S.; Pirker, S., Comparative analysis of subgrid drag modifications for dense gas-particle flows in bubbling fluidized beds, AIChE Journal, 59, 11, 4077-4099, (2013) · doi:10.1002/aic.14155
[27] Agrawal, K.; Loezos, P. N.; Syamlal, M.; Sundaresan, S., The role of meso-scale structures in rapid gas-solid flows, Journal of Fluid Mechanics, 445, 151-181, (2001) · Zbl 1156.76450
[28] Igci, Y.; Andrews, A. T.; Sundaresan, S.; Pannala, S.; O’Brien, T., Filtered two-fluid models for fluidized gas-particle suspensions, AIChE Journal, 54, 6, 1431-1448, (2008) · doi:10.1002/aic.11481
[29] Parmentier, J.-F.; Simonin, O.; Delsart, O., A functional subgrid drift velocity model for filtered drag prediction in dense fluidized bed, AIChE Journal, 58, 4, 1084-1098, (2012) · doi:10.1002/aic.12647
[30] De Wilde, J., Reformulating and quantifying the generalized added mass in filtered gas-solid flow models, Physics of Fluids, 17, 11, (2005) · Zbl 1188.76035 · doi:10.1063/1.2131925
[31] Holloway, W.; Sundaresan, S., Filtered models for reacting gas-particle flows, Chemical Engineering Science, 82, 132-143, (2012) · doi:10.1016/j.ces.2012.07.019
[32] Milioli, C. C.; Milioli, F. E.; Holloway, W.; Agrawal, K.; Sundaresan, S., Filtered two-fluid models of fluidized gas-particle flows: new constitutive relations, AIChE Journal, 59, 9, 3265-3275, (2013) · doi:10.1002/aic.14130
[33] Benyahia, S., Fine-grid simulations of gas-solids flow in a circulating fluidized bed, AIChE Journal, 58, 11, 3589-3592, (2012) · doi:10.1002/aic.13826
[34] Lu, B.; Wang, W.; Li, J., Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows, Chemical Engineering Science, 64, 15, 3437-3447, (2009) · doi:10.1016/j.ces.2009.04.024
[35] Wang, J.; van der Hoef, M. A.; Kuipers, J. A. M., Why the two-fluid model fails to predict the bed expansion characteristics of Geldart A particles in gas-fluidized beds: a tentative answer, Chemical Engineering Science, 64, 3, 622-625, (2009) · doi:10.1016/j.ces.2008.09.028
[36] Wang, W.; Lu, B.; Zhang, N.; Shi, Z.; Li, J., A review of multiscale CFD for gas-solid CFB modeling, International Journal of Multiphase Flow, 36, 2, 109-118, (2010) · doi:10.1016/j.ijmultiphaseflow.2009.01.008
[37] Hong, K.; Chen, S.; Wang, W.; Li, J., Fine-grid two-fluid modeling of fluidization of Geldart A particles, Powder Technology, 296, 2-16, (2016) · doi:10.1016/j.powtec.2015.07.003
[38] O’Brien, T. J.; Syamlal, M.; Avidan, A. A., Particle cluster effects in the numerical simulation of a circulating fluidized bed, Proceedings of the Circulating Fluidized Bed Technology IV, Preprint Volume for CFB-IV
[39] McKeen, T.; Pugsley, T., Simulation and experimental validation of a freely bubbling bed of FCC catalyst, Powder Technology, 129, 1–3, 139-152, (2003) · doi:10.1016/s0032-5910(02)00294-2
[40] Ye, M.; Wang, J.; van der Hoef, M. A.; Kuipers, J. A. M., Two-fluid modeling of Geldart A particles in gas-fluidized beds, Particuology, 6, 6, 540-548, (2008) · doi:10.1016/j.partic.2008.07.005
[41] Zhang, D. Z.; VanderHeyden, W. B., High-resolution three-dimensional numerical simulation of a circulating fluidized bed, Powder Technology, 116, 2-3, 133-141, (2001) · doi:10.1016/S0032-5910(00)00387-9
[42] Li, J.; Kwauk, M., Particle-Fluid Two-Phase Flow: Energy-Minimization Multi-Scale Method, (1994), Beijing, China: Metallurgical Industry Press, Beijing, China
[43] Hong, K.; Shi, Z.; Ullah, A.; Wang, W., Extending the bubble-based EMMS model to CFB riser simulations, Powder Technology, 266, 424-432, (2014) · doi:10.1016/j.powtec.2014.06.064
[44] Hong, K.; Shi, Z.; Wang, W.; Li, J., A structure-dependent multi-fluid model (SFM) for heterogeneous gas-solid flow, Chemical Engineering Science, 99, 191-202, (2013) · doi:10.1016/j.ces.2013.05.050
[45] Liu, X.; Jiang, Y.; Liu, C.; Wang, W.; Li, J., Hydrodynamic modeling of gas-solid bubbling fluidization based on energy-minimization multiscale (EMMS) theory, Industrial and Engineering Chemistry Research, 53, 7, 2800-2810, (2014) · doi:10.1021/ie4029335
[46] Lv, X.; Li, H.; Zhu, Q., Simulation of gas-solid flow in 2D/3D bubbling fluidized beds by combining the two-fluid model with structure-based drag model, Chemical Engineering Journal, 236, 149-157, (2014) · doi:10.1016/j.cej.2013.09.067
[47] Wang, Y.; Zou, Z.; Li, H.; Zhu, Q., A new drag model for TFM simulation of gas-solid bubbling fluidized beds with Geldart-B particles, Particuology, 15, 151-159, (2014) · doi:10.1016/j.partic.2013.07.003
[48] Chen, J.; Yu, G.; Dai, B.; Liu, D.; Zhao, L., CFD simulation of a bubbling fluidized bed gasifier using a bubble-based drag model, Energy and Fuels, 28, 10, 6351-6360, (2014) · doi:10.1021/ef501134e
[49] Wang, S.; Lu, H.; Zhang, Q.; Liu, G.; Zhao, F.; Sun, L., Modeling of bubble-structure-dependent drag for bubbling fluidized beds, Industrial & Engineering Chemistry Research, 53, 40, 15776-15785, (2014) · doi:10.1021/ie502412g
[50] Wang, S.; Yan, L.; Zhao, F.; Lu, H.; Sun, L.; Zhang, Q., Numerical simulation of hydrogen production via chemical looping reforming in interconnected fluidized bed reactor, Industrial and Engineering Chemistry Research, 53, 11, 4182-4191, (2014) · doi:10.1021/ie402787v
[51] Li, J.; Zhang, J.; Ge, W.; Liu, X., Multi-scale methodology for complex systems, Chemical Engineering Science, 59, 8-9, 1687-1700, (2004) · doi:10.1016/j.ces.2004.01.025
[52] Wei, M.; Wang, L.; Li, J., Unified stability condition for particulate and aggregative fluidization—exploring energy dissipation with direct numerical simulation, Particuology, 11, 2, 232-241, (2013) · doi:10.1016/j.partic.2012.10.002
[53] Zhang, J.; Ge, W.; Li, J., Simulation of heterogeneous structures and analysis of energy consumption in particle-fluid systems with pseudo-particle modeling, Chemical Engineering Science, 60, 11, 3091-3099, (2005) · doi:10.1016/j.ces.2004.11.057
[54] Thomas, D. G., Transport characteristics of suspension: VIII. A note on the viscosity of newtonian suspensions of uniform spherical particles, Journal of Colloid Science, 20, 3, 267-277, (1965) · doi:10.1016/0095-8522(65)90016-4
[55] Harris, A. T.; Davidson, J. F.; Thorpe, R. B., The prediction of particle cluster properties in the near wall region of a vertical riser (200157), Powder Technology, 127, 2, 128-143, (2002) · doi:10.1016/s0032-5910(02)00114-6
[56] Ishii, M.; Hibiki, T., Various Methods of Averaging—Thermo-Fluid Dynamics of Two-Phase Flow, (2011), New York, NY, USA: Springer, New York, NY, USA
[57] Karimipour, S.; Pugsley, T., A critical evaluation of literature correlations for predicting bubble size and velocity in gas-solid fluidized beds, Powder Technology, 205, 1–3, 1-14, (2011) · doi:10.1016/j.powtec.2010.09.016
[58] Horio, M.; Nonaka, A., A generalized bubble diameter correlation for gas-solid fluidized-beds, AIChE Journal, 33, 11, 1865-1872, (1987) · doi:10.1002/aic.690331113
[59] Wang, J.; Zhao, B.; Li, J., Toward a mesoscale-structure-based kinetic theory for heterogeneous gas-solid flow: particle velocity distribution function, AIChE Journal, 62, 8, 2649-2657, (2016) · doi:10.1002/aic.15244
[60] Zhu, H.; Zhu, J.; Li, G.; Li, F., Detailed measurements of flow structure inside a dense gas-solids fluidized bed, Powder Technology, 180, 3, 339-349, (2008) · doi:10.1016/j.powtec.2007.02.043
[61] Cloete, S.; Johansen, S. T.; Amini, S., Evaluation of a filtered model for the simulation of large scale bubbling and turbulent fluidized beds, Powder Technology, 235, 91-102, (2013) · doi:10.1016/j.powtec.2012.09.027
[62] Hong, K.; Wang, W.; Zhou, Q.; Wang, J.; Li, J., An EMMS-based multi-fluid model (EFM) for heterogeneous gas-solid riser flows—part I: formulation of structure-dependent conservation equations, Chemical Engineering Science, 75, 376-389, (2012) · doi:10.1016/j.ces.2012.03.022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.