×

Dynamic crack interactions in magnetoelectroelastic composite materials. (English) Zbl 1308.74051

Summary: In this paper, the dynamic interactions among cracks embedded in a two-dimensional (2-D) piezoelectric-piezomagnetic composite material are analyzed by means of a hypersingular formulation of the boundary element method. In the numerical solution procedure, extended crack opening displacements and extended traction jumps across the crack are considered as basic unknowns, so that only the traction boundary integral equations are needed on the crack surfaces. Quadratic discontinuous boundary elements are implemented together with discontinuous quarter-point elements placed next to the crack tips to ensure a proper representation of the square root asymptotic behavior. Several impermeable cracks configurations subjected to time-harmonic incident L-waves are analyzed in order to characterize the effects of the magnetoelectromechanical coupling on the dynamic crack interactions and to illustrate the dependence on such coupling of the fracture parameters: stress intensity factors, electric displacement intensity factor and magnetic induction intensity factor.

MSC:

74F15 Electromagnetic effects in solid mechanics
74R99 Fracture and damage
74S15 Boundary element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Benveniste Y (1995) Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases. Phys Rev B 51: 16424–16427 · doi:10.1103/PhysRevB.51.16424
[2] Feng WJ, Su RKL (2006) Dynamic internal crack problem of a functionally graded magneto-electro-elastic strip. Int J Solids Struct 43: 5196–5216 · Zbl 1120.74751 · doi:10.1016/j.ijsolstr.2005.07.050
[3] Feng WJ, Pan E, Wang X (2007) Dynamic fracture analysis of a penny-shaped crack in a magnetoelectroelastic layer. Int J Solids Struct 44: 7955–7974 · Zbl 1167.74548 · doi:10.1016/j.ijsolstr.2007.05.020
[4] Gao CF, Kessler H, Balke H (2003a) Crack problems in magnetoelectroelastic solids. Part I: exact solution of a crack. Int J Eng Sci 41: 969–981 · Zbl 1211.74187 · doi:10.1016/S0020-7225(02)00323-3
[5] Gao CF, Kessler H, Balke H (2003b) Crack problems in magnetoelectroelastic solids. Part II: general solution of collinear cracks. Int J Eng Sci 41: 983–994 · Zbl 1211.74188 · doi:10.1016/S0020-7225(02)00324-5
[6] Gao CF, Tong P, Zhang TY (2003c) Interfacial crack problems in magneto-electroelastic solids. Int J Eng Sci 41: 2105–2121 · doi:10.1016/S0020-7225(03)00206-4
[7] García-Sánchez F, Rojas-Díaz R, Sáez A, Zhang Ch (2007) Fracture of magnetoelectroelastic composite materials using boundary element method (BEM). Theor Appl Fract Mech 47: 192–204 · doi:10.1016/j.tafmec.2007.01.008
[8] Hu K, Li G (2005) Constant moving crack in a magnetoelectroelastic material under anti-plane shear loading. Int J Solids Struct 42: 2823–2835 · Zbl 1093.74550 · doi:10.1016/j.ijsolstr.2004.09.036
[9] Hu KQ, Kang YL, Tianjin , Li GQ (2006) Moving crack at the interface between two dissimilar magnetoelectroelastic materials. Acta Mechanica 182: 1–16 · Zbl 1112.74051 · doi:10.1007/s00707-005-0285-4
[10] Jiang X, Pan E (2004) Exact solution for 2D polygonal inclusion problem in anisotropic magnetoelectroelastic full-, half-, and bimaterial-planes. Int J Solids Struct 41: 4361–4382 · Zbl 1079.74541 · doi:10.1016/j.ijsolstr.2004.03.017
[11] Li XF (2005) Dynamic analysis of a cracked magnetoelectroelastic medium under antiplane mechanical and inplane electric and magnetic impacts. Int J Solids Struct 42: 3185–3205 · Zbl 1142.74014 · doi:10.1016/j.ijsolstr.2004.10.020
[12] Liu J-X, Liu X, Zhao Y (2001) Green’s functions for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack. Int J Eng Sci 39: 1405–1418 · Zbl 1210.74043 · doi:10.1016/S0020-7225(01)00049-0
[13] Nan CW (1994) Magnetoelectric effect in composite of piezoelectric and piezomagnetic phases. Phys Rev B 50: 6082–6088 · doi:10.1103/PhysRevB.50.6082
[14] Rojas-Díaz R, Sáez A, García-Sánchez F, Zhang Ch (2008) Time-harmonic Green’s functions for anisotropic magnetoelectroelasticity. Int J Solids Struct 45: 144–158 · Zbl 1167.74407
[15] Rojas-Díaz R, García-Sánchez F, Sáez A (2009) Failure analysis of cracked magnetoelectroelastic composites under time-harmonic loading (submitted for publication) · Zbl 1193.74038
[16] Saez A, García-Sánchez F, Domínguez J (2006) Hypersingular BEM for dynamic fracture in 2-D piezoelectric solids. Comput Methods Appl Mech Eng 196: 235–246 · Zbl 1120.74846 · doi:10.1016/j.cma.2006.03.002
[17] Sih GC, Song ZF (2003) Magnetic and electric poling effects associated with crack growth in BaTiO3–CoFe2O4 composite. Theor Appl Fract Mech 39: 209–227 · doi:10.1016/S0167-8442(03)00003-X
[18] Sih GC, Chen EP (2003) Dilatational and distortional behavior of cracks in magnetoelectroelastic materials. Theor Appl Fract Mech 40, 1–21 (A)
[19] Soh AK, Liu JX (2005) On the constitutive equations of magnetoelectroelastic solids. J Intell Mater Syst Struct 16: 597–602 · doi:10.1177/1045389X05051630
[20] Song ZF, Sih GC (2003) Crack initiation behavior in magnetoelectroelastic composite under in-plane deformation. J Theor Appl Fract Mech 39: 189–207 · doi:10.1016/S0167-8442(03)00002-8
[21] Su RKL, Feng WJ, Liu J (2007) Transient response of interface cracks between dissimilar magneto-electro-elastic strips under out-ofplane mechanical and in-plane magneto-electrical impact loads. Compos Struct 78: 119–128 · doi:10.1016/j.compstruct.2005.08.017
[22] Tian WY, Gabbert U (2004) Multiple crack interaction problem in magnetoelectroelastic solids. Eur J Mech A/Solids 23: 599–614 · Zbl 1062.74044 · doi:10.1016/j.euromechsol.2004.02.002
[23] Tian WY, Gabbert U (2005) Macrocrack–microcrack interaction problem in magnetoelectroelastic solids. Mech Mater 37: 565–592 · doi:10.1016/j.mechmat.2004.04.008
[24] Van Denboomgaard J, Van Run AMJG, Van Suchtelen J (1976) Piezoelectric–piezomagnetic composites with magnetoelectric effect. Ferroelectrics 14: 727–728 · doi:10.1080/00150197608236711
[25] Van Suchtelen J (1972) Product properties: a new application of composite materials. Phillips Res Rep 27: 28–37
[26] Wang BL, Mai YW (2003) Crack tip field in piezoelectric/piezomagnetic media. Eur J Mech A/Solids 22: 591–602 · Zbl 1032.74641 · doi:10.1016/S0997-7538(03)00062-7
[27] Yong HD, Zhou YH (2007) Transient response of a cracked magnetoelectroelastic strip under anti-plane impact. Int J Solids Struct 44: 705–717 · Zbl 1123.74028 · doi:10.1016/j.ijsolstr.2006.05.015
[28] Zhang PW, Zhou ZG, Wu LZ (2007a) Solutions to two or four parallel Mode-I permeable cracks in magnetoelectroelastic composite materials. Philos Mag 87: 3175–3208 · doi:10.1080/14786430701255903
[29] Zhang PW, Zhou ZG, Wang B (2007b) Dynamic behavior of two collinear interface cracks between two dissimilar functionally graded piezoelectric/piezomagnetic material strips. Appl Math Mech (English Edition) 28: 615–625 · Zbl 1231.74235 · doi:10.1007/s10483-007-0507-1
[30] Zhou ZG, Wang B, Sun YG (2004) Two collinear interface cracks in magneto-electro-elastic composites. Int J Eng Sci 42: 1155–1167 · Zbl 1211.76107 · doi:10.1016/j.ijengsci.2004.01.005
[31] Zhou ZG, Wang B (2004) Two parallel symmetry permeable cracks in functionally graded piezoelectric/piezomagnetic materials under anti-plane shear loading. Int J Solids Struct 41: 4407–4422 · Zbl 1079.74621 · doi:10.1016/j.ijsolstr.2004.03.004
[32] Zhou ZG, Wu LZ, Wang B (2005) The dynamic behavior of two collinear interface cracks in magneto-electro-elastic materials. Eur J Mech A/Solids 24: 253–262 · Zbl 1069.74047 · doi:10.1016/j.euromechsol.2004.10.006
[33] Zhou ZG, Wang B (2006) Dynamic behavior of two parallel symmetry cracks in magneto-electro-elastic composites under harmonic anti-plane waves. Appl Math Mech (English Edition) 27: 583–591 · Zbl 1145.74036 · doi:10.1007/s10483-006-0503-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.