×

Dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation. (English) Zbl 1378.34020

Summary: In this paper, the computation schemes for periodic solutions of the forced fractional-order Mathieu-Duffing equation are derived based on incremental harmonic balance (IHB) method. The general forms of periodic solutions are founded by the IHB method, which could be useful to obtain the periodic solutions with higher precision. The comparisons of the approximate analytical solutions by the IHB method and numerical integration are fulfilled, and the results certify the correctness and higher precision of the solutions by the IHB method. The dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation is investigated by the IHB method. Then, the effects of the excitation frequency, fractional order, fractional coefficient, and nonlinear stiffness coefficient on the complex dynamical behaviors are analyzed. At last, the detailed results are summarized and the conclusions are made, which present some useful information to analyze and/or control the dynamical response of this kind of system.{
©2016 American Institute of Physics}

MSC:

34A08 Fractional ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
34C60 Qualitative investigation and simulation of ordinary differential equation models

Software:

sysdfod; DFOC
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Podlubny, I., Fractional Differential Equations (1998) · Zbl 0922.45001
[2] Caponetto, R.; Dongola, G.; Fortuna, L.; Petras, I., Fractional Order Systems: Modeling and Control Applications (2010)
[3] Das, S., Functional Fractional Calculus for System Identification and Controls (2008) · Zbl 1154.26007
[4] Petras, I., Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation (2011) · Zbl 1228.34002
[5] Golmankhaneh, A. K.; Golmankhaneh, A. K.; Baleanu, D., On nonlinear fractional Klein-Gordon equation, Signal Process., 91, 3, 446-451 (2011) · Zbl 1203.94031 · doi:10.1016/j.sigpro.2010.04.016
[6] Malinowska, A. B.; Torres, D. F. M., Fractional calculus of variations for a combined Caputo derivative, Fractional Calculus Appl. Anal., 14, 4, 523-537 (2011) · Zbl 1273.49025 · doi:10.2478/s13540-011-0032-6
[7] Shen, Y. J.; Wei, P.; Yang, S. P., Primary resonance of fractional-order van der Pol oscillator, Nonlinear Dyn., 77, 1629-1642 (2014) · doi:10.1007/s11071-014-1405-2
[8] Xu, Y.; Li, Y. G.; Liu, D.; Jia, W. T.; Huang, H., Responses of Duffing oscillator with fractional damping and random phase, Nonlinear Dyn., 74, 3, 745-753 (2013) · Zbl 1279.34095 · doi:10.1007/s11071-013-1002-9
[9] Li, C. P.; Deng, W. H., Remarks on fractional derivatives, Appl. Math. Comput., 187, 2, 777-784 (2007) · Zbl 1125.26009 · doi:10.1016/j.amc.2006.08.163
[10] Zeng, F. H.; Li, C. P., High-order finite difference methods for time-fractional subdiffusion equation, Chin. J. Comput. Phys., 30, 4, 491-500 (2013)
[11] Leung, A. Y. T.; Guo, Z. J.; Yang, H. X., The residue harmonic balance for fractional order van der Pol like oscillators, J. Sound Vib., 331, 1115-1126 (2012) · doi:10.1016/j.jsv.2011.10.023
[12] Yang, Y. G.; Xu, W.; Gu, X. D., Stochastic response of a class of self-excited systems with Caputo-type fractional derivative driven by Gaussian white noise, Chaos, Solitons Fractals, 77, 190-204 (2015) · Zbl 1353.34102 · doi:10.1016/j.chaos.2015.05.029
[13] Chen, L. C.; Zhao, T. L.; Li, W.; Zhao, J., Bifurcation control of bounded noise excited Duffing oscillator by a weakly fractional-order \(PI^λ D^μ\) feedback controller, Nonlinear Dyn., 83, 1-2, 529-539 (2016) · Zbl 1349.93162 · doi:10.1007/s11071-015-2345-1
[14] Xu, Y.; Wang, H.; Li, Y., Image encryption based on synchronization of fractional chaotic systems, Commun. Nonlinear Sci. Numer. Simul., 19, 10, 3735-3744 (2014) · Zbl 1470.94099 · doi:10.1016/j.cnsns.2014.02.029
[15] Golmankhaneh, A. K.; Golmankhaneh, A. K.; Baleanu, D., Homotopy perturbation method for solving a system of Schrödinger-Korteweg-de Vries equations, Rom. Rep. Phys., 63, 3, 609-623 (2011)
[16] Li, X. H.; Hou, J. Y.; Chen, J. F., An analytical method for Mathieu oscillator based on method of variation of parameter, Commun. Nonlinear Sci. Numer. Simul., 37, 326-353 (2016) · Zbl 1473.34031 · doi:10.1016/j.cnsns.2016.02.003
[17] Nayfeh, A. H., Nonlinear Oscillations (1973)
[18] Li, X. H.; Hou, J. Y., Bursting phenomenon in a piecewise mechanical system with parameter perturbation in stiffness, Int. J. Non-Linear Mech., 81, 165-176 (2016) · doi:10.1016/j.ijnonlinmec.2016.01.014
[19] Sanders, J. A.; Verhulst, F.; Murdock, J., Averaging Methods in Nonlinear Dynamical Systems (2007) · Zbl 1128.34001
[20] Leung, A. Y. T.; Chui, S. K., Nonlinear vibration of coupled Duffing oscillators by an improved incremental harmonic balance method, J. Sound Vib., 181, 4, 619-633 (1995) · Zbl 1237.70008 · doi:10.1006/jsvi.1995.0162
[21] Ju, P. J.; Xue, X., Global residue harmonic balance method to periodic solutions of a class of strongly nonlinear oscillators, Appl. Math. Modell., 38, 24, 6144-6152 (2014) · Zbl 1449.34053 · doi:10.1016/j.apm.2014.05.026
[22] Heydari, M.; Loghmani, G. B.; Hosseini, S. M., An improved piecewise variational iteration method for solving strongly nonlinear oscillators, Comput. Appl. Math., 34, 1, 215-249 (2015) · Zbl 1319.65059 · doi:10.1007/s40314-014-0113-3
[23] Shen, Y. J.; Yang, S. P.; Liu, X. D., Nonlinear dynamics of a spur gear pair with time-varying stiffness and backlash based on incremental harmonic balance method, Int. J. Mech. Sci., 48, 11, 1256-1263 (2006) · Zbl 1192.74148 · doi:10.1016/j.ijmecsci.2006.06.003
[24] Lau, S. L.; Zhang, W. S., Nonlinear vibrations of piecewise-linear systems by incremental harmonic balance method, ASME J. Appl. Mech., 59, 153-160 (1992) · Zbl 0850.70247 · doi:10.1115/1.2899421
[25] Li, H.; Cao, J.; Li, C., High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (III), J. Comput. Appl. Math., 299, 159 (2016) · Zbl 1382.65251 · doi:10.1016/j.cam.2015.11.037
[26] Odzijewicz, T.; Malinowska, A. B.; Torres, D. F. M., Fractional variational calculus with classical and combined Caputo derivatives, Nonlinear Anal., 75, 3, 1507-1515 (2012) · Zbl 1236.49043 · doi:10.1016/j.na.2011.01.010
[27] Shen, Y. J.; Yang, S. P.; Xing, H. J., Primary resonance of Duffing oscillator with fractional-order derivative, Commun. Nonlinear Sci. Numer. Simul., 17, 7, 3092-3100 (2012) · Zbl 1252.35274 · doi:10.1016/j.cnsns.2011.11.024
[28] Shen, Y. J.; Yang, S. P.; Xing, H. J., Primary resonance of Duffing oscillator with two kinds of fractional-order derivatives, Int. J. Non-Linear Mech., 47, 9, 975-983 (2012) · doi:10.1016/j.ijnonlinmec.2012.06.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.