zbMATH — the first resource for mathematics

Micromechanical studies of strain rate dependent compressive strength in brittle polycrystalline materials. (English) Zbl 07072983
74 Mechanics of deformable solids
76 Fluid mechanics
Full Text: DOI
[1] Adlakha, I.; Bhatia, M. A.; Solanki, K. N.; Tschopp, M. A., Atomic scale investigation of grain boundary structure role on deformation and crack growth dynamics in aluminum, J. Chem. Inform. Model., 53, 9, 1689-1699, (2013)
[2] Asaro, R. J.; Needleman, A., Texture development and strain hardening in rate dependent polycrystals, Acta Metallurgica, 33, 6, 923-953, (1985)
[3] Belytschko, T. [1983] “An overview of semidiscretization and time integration procedures,” In Computational Methods for Transient Analysis, pp. 1-65. · Zbl 0542.73106
[4] Borden, M. J.; Verhoosel, C. V.; Scott, M. A.; Hughes, T. J. R.; Landis, C. M., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Eng., 217-220, 77-95, (2012) · Zbl 1253.74089
[5] Camacho, G. T.; Ortiz, M., Computational modelling of impact damage in brittle materials, Int. J. Solids Struct., 33, 20-22, 2899-2938, (1996) · Zbl 0929.74101
[6] Chen, W.; Ravichandran, G., Static and dynamic compressive behavior of aluminum nitride under moderate confinement, J. Am. Ceramic Soc., 79, 3, 579-584, (2005)
[7] Clayton, J. D.; Knap, J., A geometrically nonlinear phase field theory of brittle fracture, Int. J. Fract., 189, 2, 139-148, (2014)
[8] Clayton, J. D.; Knap, J., Phase field modeling of directional fracture in anisotropic polycrystals, Comput. Mater. Sci., 98, 158-169, (2015)
[9] Cuitiño, A.; Ortiz, M., A material-independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics, Eng. Comput., 9, 437-451, (1992)
[10] den Toonder, J. M. J.; van Dommelen, J. A. W.; Baaijens, F. P. T., The relation between single crystal elasticity and the effective elastic behaviour of polycrystalline materials: theory, measurement and computation, Model. Simul. Mater. Sci. Eng., 7, 909-928, (1999)
[11] Espinosa, H. D.; Zavattieri, P. D., A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: Theory and numerical implementation, Mech. Mater., 35, 333-364, (2003)
[12] Fallahi, A.; Ataee, A., Effects of crystal orientation on stress distribution near the triple junction in a tricrystal \(\gamma\)-TiAl, Mater. Sci. Eng. A, 527, 18, 4576-4581, (2010)
[13] Hu, G.; Chen, C. Q.; Ramesh, K. T.; McCauley, J. W., Mechanisms of dynamic deformation and dynamic failure in aluminum nitride, Acta Mater., 60, 3480-3490, (2012)
[14] Hu, G.; Ramesh, K. T.; Cao, B.; Mccauley, J. W., The compressive failure of aluminum nitride considered as a model advanced ceramic, J. Mech. Phys. Solids, 59, 1076-1093, (2011)
[15] Hughes, T. J. R., Computational Methods for Transient Analysis, Analysis of transient algorithms with particular reference to stability behavior, 67-155, (1983), North-Holland: North-Holland, Amsterdam
[16] Jiang, Y.; Li, E., XFEM with smoothing technique for static fracture mechanics in three-dimension, Int. J. Comput. Methods, 13, 2, 1640004, (2016) · Zbl 1359.74416
[17] Kikuchi, H.; Kalia, R. K.; Nakano, A.; Vashishta, P.; Branicio, P. S.; Shimojo, F., Brittle dynamic fracture of crystalline cubic silicon carbide (3C-SiC) via molecular dynamics simulation, J. Appl. Phys., 98, 10, 1-4, (2005)
[18] Larsen, C. J.; Ortiz, M.; Richardson, C. L., Fracture paths from front kinetics: Relaxation and rate independence, Archive Rational Mech. Anal., 193, 3, 539-583, (2009) · Zbl 1170.74007
[19] Li, B.; Pandolfi, A.; Ortiz, M., Material-point erosion simulation of dynamic fragmentation of metals, Mech. Mater., 80, PB, 288-297, (2015)
[20] Li, Q. M., Strain energy density failure criterion, Int. J. Solids Struct., 38, 38-39, 6997-7013, (2001) · Zbl 1009.74004
[21] Liu, G. R.; Chen, L.; Li, M., S-FEM for fracture problems, theory, formulation and application, Int. J. Comput. Methods, 11, (2014) · Zbl 1359.74025
[22] Maiti, S.; Rangaswamy, K.; Geubelle, P. H., Mesoscale analysis of dynamic fragmentation of ceramics under tension, Acta Mater., 53, 3, 823-834, (2005)
[23] Mielke, A.; Ortiz, M., A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems, ESAIM: Control, Opt. Calculus Var., 14, 3, 494-516, (2008) · Zbl 1357.49043
[24] Negri, M., A finite element approximation of the Griffith’s model in fracture mechanics, Numerische Mathematik, 95, 653-687, (2003) · Zbl 1068.74080
[25] Nemat-Nasser, S.; Deng, H., Strain-rate effect on brittle failure in compression, Acta Metallurgica Et Materialia, 42, 3, 1013-1024, (1994)
[26] Nittur, P. G.; Maiti, S.; Geubelle, P. H., Grain-level analysis of dynamic fragmentation of ceramics under multi-axial compression, J. Mech. Phys. Solids, 56, 3, 993-1017, (2008) · Zbl 1419.74217
[27] Pandolfi, A.; Ortiz, M., An eigenerosion approach to brittle fracture, Int. J. Numer. Methods Eng., 92, 8, 694-714, (2012) · Zbl 1352.74299
[28] Péron-lührs, V.; Jérusalem, A.; Sansoz, F.; Stainier, L.; Noels, L., A two-scale model predicting the mechanical behavior of nanocrystalline solids, J. Mech. Phys. Solids, 61, 9, 1895-1914, (2013)
[29] Qiu, R.; Li, C.; Fang, T., Mechanical properties and crack growth behavior of polycrystalline copper using molecular dynamics simulation, Physica Scripta, 92, 9, (2017)
[30] Quey, R.; Dawson, P. R.; Barbe, F., Large-scale 3D random polycrystals for the finite element method?: Generation, meshing and remeshing, Comput. Methods Appl. Mech. Eng., 200, 1729-1745, (2011) · Zbl 1228.74093
[31] Ramesh, K. T. [2008] “High strain rate and impact experiments,” In Handbook of Experimental Solid Mechanics, p. 874.
[32] Rashid, M. M.; Nemat-Nasser, S., A constitutive algorithm for rate-dependent crystal plasticity, Comput. Methods Appl. Mech. Eng., 94, 2, 201-228, (1992) · Zbl 0747.73049
[33] Ruiz, G.; Ortiz, M.; Pandolfi, A., Three-dimensional finite-element simulation of the dynamic brazilian tests on concrete cylinders, Int. J. Numer. Methods Eng., 48, 963-994, 1999, (2000) · Zbl 1029.74048
[34] Sarva, S.; Nemat-Nasser, S., Dynamic compressive strength of silicon carbide under uniaxial compression, Mater. Sci. Eng., A317, 140-144, (2001)
[35] Schmidt, B.; Fraternali, F.; Ortiz, M., Eigenfracture: An Eigendeformation approach to variational fracture, Multiscale Model. Simul., 7, 3, 1237-1266, (2009) · Zbl 1173.74040
[36] Sfantos, G. K.; Aliabadi, M. H., A boundary cohesive grain element formulation formodelling intergranular microfracture in polycrystalline brittle, Int. J. Numer. Meth. Eng., 69, 1590-1626, (2007) · Zbl 1194.74503
[37] Subhash, G.; Subhash, G.; Ravichandran, G.; Ravichandran, G., Mechanical behaviour of a hot pressed aluminum nitride under uniaxial compression, J. Mater. Sci., 33, 7, 1933-1939, (1998)
[38] Sukumar, N.; Srolovitz, D. J.; Baker, T. J.; Prévost, J. H., Brittle fracture in polycrystalline microstructures with the extended finite element method, Int. J. Numer. Methods Eng., 56, 14, 2015-2037, (2003) · Zbl 1038.74652
[39] Sun, S.; Sundararaghavan, V., Modeling crack propagation in polycrystalline microstructure using variational multiscale method, Math. Problems Eng., 2016, 1-14, (2016) · Zbl 1400.74096
[40] Tschopp, M. A.; Tucker, G. J.; McDowell, D. L., Atomistic simulations of tension-compression asymmetry in dislocation nucleation for copper grain boundaries, Comput. Mater. Sci., 44, 2, 351-362, (2008)
[41] Wang, H.; Ramesh, K. T., Dynamic strength and fragmentation of hot-pressed silicon carbide under uniaxial compression, Acta Mater., 52, 2, 355-367, (2004)
[42] Yang, Y.; Zheng, H.; Xiuli, Du, An enriched edge-based smoothed FEM for linear elastic fracture problems, Int. J. Comput. Methods, 14, 5, 1750052, (2017) · Zbl 1404.74177
[43] Zeng, W.; Liu, G. R.; Li, D.; Dong, X. W., A smoothing technique based beta finite element method (\(\beta\)FEM) for crystal plasticity modeling, Comput. Struct., 162, 48-67, (2016)
[44] Zhang, P., Balint, D. and Lin, J. [2011] “Controlled Poisson Voronoi tessellation for virtual grain structure generation: a statistical evaluation,” Philos. Mag.91(36), 4555-4573.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.