×

Kinematic dynamos using constrained transport with high-order Godunov schemes and adaptive mesh refinement. (English) Zbl 1110.76038

Authors’ abstract: We propose to extend the well-known MUSCL-Hancock scheme for Euler equations to the induction equation modeling the magnetic field evolution in kinematic dynamo problems. The scheme is based on an integral form of the underlying conservation law which, in our formulation, results in a “finite-surface” scheme for the induction equation. This naturally leads to the well-known “constrained transport” method, with additional continuity requirement on the magnetic field representation. The second ingredient in the MUSCL scheme is the predictor step that ensures second order accuracy both in space and time. We explore specific constraints that the mathematical properties of the induction equations place on this predictor step, showing that three possible variants can be considered. We show that the most aggressive formulations (referred to as C-MUSCL and U-MUSCL) reach the same level of accuracy as the other one (referred to as Runge–Kutta), at a lower computational cost. More interestingly, these two schemes are compatible with the adaptive mesh refinement (AMR) framework. It has been implemented in the AMR code RAMSES. It offers a novel and efficient implementation of a second-order scheme for the induction equation. We have tested it by solving two kinematic dynamo problems in the low diffusion limit. The construction of this scheme for the induction equation constitutes a step towards solving the full MHD set of equations using an extension of our current methodology.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Archontis, V.; Dorch, S. B.F.; Nordlund, A., Numerical simulations of kinematic dynamo action, Astron. Astrophys., 397, 393-399 (2003) · Zbl 1069.76057
[2] Balsara, D. S., Divergence-free adaptive mesh refinement for magnetohydrodynamics, J. Comput. Phys., 174, 2, 614-648 (2001) · Zbl 1157.76369
[3] Balsara, D. S.; Spicer, D. S., A staggered mesh algorithm using high order Godunov fluxes to ensure solenodial magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys., 149, 2, 270-292 (1999) · Zbl 0936.76051
[4] Berger, M. J.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82, 64-84 (1989) · Zbl 0665.76070
[5] Berger, M. J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 484-512 (1984) · Zbl 0536.65071
[6] Bouchut, F., Non-linear Stability of Finite Volume Methods for Hyperbolic Conservation Laws. Frontiers in Mathematics (2005), Birkhäuser: Birkhäuser Basel
[7] Brackbill, J. U.; Barnes, D. C., The effect of nonzero product of magnetic gradient and B on the numerical solution of the magnetohydrodynamic equations, J. Comput. Phys., 35, May, 426-430 (1980) · Zbl 0429.76079
[8] Childress, S.; Gilbert, A. D., Stretch, Twist, Fold. The Fast Dynamo, XI. Stretch, Twist, Fold. The Fast Dynamo, XI, Lecture Notes in Physics, vol. 37 (1995), Springer: Springer Berlin, 406pp · Zbl 0841.76001
[9] Christensen, U. R.; Aubert, J.; Cardin, P.; Dormy, E.; Gibbons, S.; Glatzmaier, G. A.; Grote, E.; Honkura, Y.; Jones, C.; Kono, M.; Matsushima, M.; Sakuraba, A.; Takahashi, F.; Tilgner, A.; Wicht, J.; Zhang, K., A numerical dynamo benchmark, Phys. Earth Planetary Interiors, 128, 25-34 (2001)
[10] Colella, P., Multidimensional upwind methods for hyperbolic conservation laws, J. Comput. Phys., 87, 1, 171-200 (1990) · Zbl 0694.65041
[11] Crockett, R. K.; Colella, P.; Fisher, R. T.; Klein, R. I.; McKee, C. F., An unsplit, cell-centered Godunov method for ideal mhd, J. Comput. Phys., 203, 422-448 (2005) · Zbl 1143.76599
[12] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C. D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys., 175, 645-673 (2002) · Zbl 1059.76040
[13] Evans, C. R.; Hawley, J. F., Simulation of magnetohydrodynamic flows - A constrained transport method, Astrophys. J., 332, 659-677 (1988)
[14] S. Fromang, P. Hennebelle, R. Teyssier, A high order AMR Godunov code for astrophysical MHD, Astron. Astrophys. (in preparation).; S. Fromang, P. Hennebelle, R. Teyssier, A high order AMR Godunov code for astrophysical MHD, Astron. Astrophys. (in preparation).
[15] Galloway, D. J.; Frisch, U., Dynamo action in a family of flows with chaotic streamlines, Geophys. Astrophys. Fluid Dyn., 36, 53-83 (1986)
[16] Gardiner, T. A.; Stone, J. M., An unsplit Godunov method for ideal MHD via constrained transport, J. Comput. Phys., 205, 509-539 (2005) · Zbl 1087.76536
[17] Gilbert, A., Fast dynamo action in the Ponomarenko dynamo, Geophys. Astrophys. Fluid Dyn., 44, 241-258 (1988) · Zbl 0676.76096
[18] Harder, H.; Hansen, U., A finite-volume solution method for thermal convection and dynamo problems in spherical shells, Geophys. J. Int., 161, 522-532 (2005)
[19] Khokhlov, A. M., Fully threaded tree algorithms for adaptive refinement fluid dynamics simulations, J. Comput. Phys., 143, 2, 519-543 (1998) · Zbl 0934.76057
[20] Kleimann, J.; Kopp, A.; Fichtner, H.; Grauer, R.; Germaschewski, K., Three-dimensional MHD high-resolution computations with CWENO employing adaptive mesh refinement, Comput. Phys. Commun., 158, 47-56 (2004) · Zbl 1196.76085
[21] Kravtsov, A. V.; Klypin, A. A.; Khokhlov, A. M., Adaptive refinement tree: a new high-resolution N-body code for cosmological simulations, Astrophys. J. Suppl. Ser., 111, 73 (1997)
[22] Li, S.; Li, H., A novel approach of divergence-free reconstruction for adaptive mesh refinement, J. Comput. Phys., 199, 1, 1-15 (2004) · Zbl 1054.65121
[23] Londrillo, P.; Del Zanna, L., High-order upwind schemes for multidimensional magnetohydrodynamics, Astrophys. J., 530, 508-524 (2000)
[24] Londrillo, P.; Del Zanna, L., On the divergence-free condition in Godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method, J. Comput. Phys., 195, 17-48 (2004) · Zbl 1087.76074
[25] Matsui, H.; Okuda, H., MHD dynamo simulation using the GeoFEM platform - verification by the dynamo benchmark test, Int. J. Comput. Fluid Dyn., 19, 15-22 (2005) · Zbl 1286.76088
[26] F. Plunian, P. Massé, Couplage magnétohydraulique: modélisation de la dynamo cinématique, in: Meunier G. Hermes (Ed.), Electromagnétisme et éléments finis, vol. 3, 2002, pp. 215-247.; F. Plunian, P. Massé, Couplage magnétohydraulique: modélisation de la dynamo cinématique, in: Meunier G. Hermes (Ed.), Electromagnétisme et éléments finis, vol. 3, 2002, pp. 215-247.
[27] Ponomarenko, Y., On the theory of hydromagnetic dynamos (English translation), J. Appl. Mech. Tech. Phys., 14, 775-778 (1973)
[28] Popinet, S., Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries, J. Comput. Phys., 190, 2, 572-600 (2003) · Zbl 1076.76002
[29] Powell, K. G.; Roe, P. L.; Linde, T. J.; Gombosi, T. I.; De Zeeuw, D. L., A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284-309 (1999) · Zbl 0952.76045
[30] Ryu, D.; Miniati, F.; Jones, T. W.; Frank, A., A divergence-free upwind code for multidimensional magnetohydrodynamic flows, Astrophys. J., 509, 244-255 (1998)
[31] Samtaney, R.; Jardin, S. C.; Colella, P.; Martin, D. F., 3D adaptive mesh refinement simulations of pellet injection in tokamaks, Comput. Phys. Commun., 164, 220-228 (2004)
[32] Teyssier, R., Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES, Astron. Astrophys., 385, 337-364 (2002)
[33] Toro, E., Riemann Solvers and Numerical Methods for Fluid Dynamics (1999), Springer: Springer Berlin
[34] Tóth, G., The ∇·\(B=0\) constraint in shock-capturing magnetohydrodynamics codes, J. Comput. Phys., 161, 2, 605-652 (2000) · Zbl 0980.76051
[35] Tóth, G.; Roe, P. L., Divergence- and curl-preserving prolongation and restriction formulas, J. Comput. Phys., 180, 2, 736-750 (2002) · Zbl 1143.65322
[36] van Leer, B., Towards the ultimate conservative difference scheme: IV. A new approach to numerical convection, J. Comput. Phys., 23, 276-299 (1977) · Zbl 0339.76056
[37] Yee, K., Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media, IEEE Trans. Antenna Propag., 302 (1966)
[38] Ziegler, U., A three-dimensional Cartesian adaptive mesh code for compressible magnetohydrodynamics, Comput. Phys. Commun., 116, 65-77 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.