×

Concentration of the empirical spectral distribution of random matrices with dependent entries. (English) Zbl 1428.60018

Summary: We investigate concentration properties of spectral measures of Hermitian random matrices with partially dependent entries. More precisely, let \(X_n\) be a Hermitian random matrix of the size \(n\times n\) that can be split into independent blocks of the size at most \(d_n=o(n^2)\). We prove that under some mild conditions on the distribution of the entries of \(X_n\), the empirical spectral measure of \(X_n\) concentrates around its mean.
The main theorem is a strengthening of the recent result by T. Kemp and D. Zimmermann [“Random matrices with log-range correlations, and log-Sobolev Inequalities”, Preprint, arXiv:1405.2581], where the size of the blocks grows as \(o(\log n)\). As an application, we are able to upgrade the results of J. H. Schenker and H. Schulz-Baldes [Math. Res. Lett. 12, No. 4, 531–542 (2005; Zbl 1095.82004)] on the convergence in expectation to the semicircle law of a class of random matrices with dependent entries to weak convergence in probability. Other applications include patterned random matrices, e.g. matrices of Toeplitz, Hankel or circulant type and matrices with heavy tailed entries in the domain of attraction of the Gaussian distribution.

MSC:

60B20 Random matrices (probabilistic aspects)
15B52 Random matrices (algebraic aspects)

Citations:

Zbl 1095.82004
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] R. Adamczak, On the Marchenko-Pastur and circular laws for some classes of random matrices with dependent entries, Electron. J. Probab. 16 (2011), no. 37, 1068-1095. · Zbl 1221.15049 · doi:10.1214/EJP.v16-899
[2] R. Adamczak, Some remarks on the Dozier-Silverstein theorem for random matrices with dependent entries, Random Matrices Theory Appl. 2 (2013), no. 2, 1250017, 46. · Zbl 1282.60006 · doi:10.1142/S2010326312500177
[3] R. Adamczak, Random non-Abelian G-circulant matrices. Spectrum of random convolution operators on large finite groups, arXiv e-prints (2017), arXiv:1712.04772. · Zbl 1479.60009
[4] G. W. Anderson, A. Guionnet, and O. Zeitouni, An introduction to random matrices, Cambridge Studies in Advanced Mathematics, vol. 118, Cambridge University Press, Cambridge, 2010. · Zbl 1184.15023
[5] G. W. Anderson and O. Zeitouni, A CLT for a band matrix model, Probab. Theory Related Fields 134 (2006), no. 2, 283-338. · Zbl 1084.60014
[6] A. Araujo and E. Giné, The central limit theorem for real and Banach valued random variables, John Wiley & Sons, New York-Chichester-Brisbane, 1980, Wiley Series in Probability and Mathematical Statistics. · Zbl 0457.60001
[7] Z. D. Bai, Methodologies in spectral analysis of large-dimensional random matrices, a review, Statist. Sinica 9 (1999), no. 3, 611-677, With comments by G. J. Rodgers and Jack W. Silverstein; and a rejoinder by the author. · Zbl 0949.60077
[8] Z. D. Bai and J. W. Silverstein, Spectral analysis of large dimensional random matrices, second ed., Springer Series in Statistics, Springer, New York, 2010. · Zbl 1301.60002
[9] J. Bellissard, Random matrix theory and the Anderson model, J. Statist. Phys. 116 (2004), no. 1-4, 739-754. · Zbl 1142.82342
[10] J. Bellissard, J. Magnen, and V. Rivasseau, Supersymmetric analysis of a simplified two-dimensional Anderson model at small disorder, Markov Process. Related Fields 9 (2003), no. 2, 261-278, Inhomogeneous random systems (Cergy-Pontoise, 2002). · Zbl 1033.82006
[11] P. Billingsley, Convergence of probability measures, second ed., Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1999, A Wiley-Interscience Publication. · Zbl 0944.60003
[12] A. Bose, R. Subhra H., and K. Saha, Limiting spectral distribution of circulant type matrices with dependent inputs, Electron. J. Probab. 14 (2009), no. 86, 2463-2491. · Zbl 1188.15033
[13] A. Bose, R. Subhra H., and K. Saha, Patterned random matrices and method of moments, Proceedings of the International Congress of Mathematicians. Volume IV, Hindustan Book Agency, New Delhi, 2010, pp. 2203-2231. · Zbl 1228.60012
[14] E. Brézin, C. Itzykson, G. Parisi, and J. B. Zuber, Planar diagrams, Comm. Math. Phys. 59 (1978), no. 1, 35-51. · Zbl 0997.81548
[15] W. Bryc, A. Dembo, and T. Jiang, Spectral measure of large random Hankel, Markov and Toeplitz matrices, Ann. Probab. 34 (2006), no. 1, 1-38. · Zbl 1094.15009
[16] B. Delyon, Concentration inequalities for the spectral measure of random matrices, Electron. Commun. Probab. 15 (2010), 549-561. · Zbl 1225.15032
[17] A. Guionnet and O. Zeitouni, Concentration of the spectral measure for large matrices, Electron. Comm. Probab. 5 (2000), 119-136. · Zbl 0969.15010
[18] A. Guntuboyina and H. Leeb, Concentration of the spectral measure of large Wishart matrices with dependent entries, Electron. Commun. Probab. 14 (2009), 334-342. · Zbl 1188.15035
[19] A. J. Hoffman and H. W. Wielandt, The variation of the spectrum of a normal matrix, Duke Math. J. 20 (1953), 37-39. · Zbl 0051.00903
[20] K. Hofmann-Credner and M. Stolz, Wigner theorems for random matrices with dependent entries: ensembles associated to symmetric spaces and sample covariance matrices, Electron. Commun. Probab. 13 (2008), 401-414. · Zbl 1189.15044 · doi:10.1214/ECP.v13-1395
[21] I. A. Ibragimov and Y. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971, With a supplementary chapter by I. A. Ibragimov and V. V. Petrov, Translation from the Russian edited by J. F. C. Kingman. · Zbl 0219.60027
[22] O. Kallenberg, Foundations of modern probability, second ed., Probability and its Applications (New York), Springer-Verlag, New York, 2002. · Zbl 0996.60001
[23] T. Kemp and D. Zimmermann, Random Matrices with Log-Range Correlations, and Log-Sobolev Inequalities, arXiv e-prints (2014), arXiv:1405.2581. · Zbl 1457.60010
[24] E. G. Larsson and P. Stoica, Space-time block coding for wireless communications, Cambridge University Press, Cambridge, 2003. · Zbl 1077.94002
[25] M. Ledoux, The concentration of measure phenomenon, Mathematical Surveys and Monographs, vol. 89, American Mathematical Society, Providence, RI, 2001. · Zbl 0995.60002
[26] A. Marshall, Olkin I., and B. C. Arnold, Inequalities: theory of majorization and its applications, second ed., Springer Series in Statistics, Springer, New York, 2011. · Zbl 1219.26003
[27] M. W. Meckes, Concentration of norms and eigenvalues of random matrices, J. Funct. Anal. 211 (2004), no. 2, 508-524. · Zbl 1064.15027 · doi:10.1016/S0022-1236(03)00198-8
[28] M. W. Meckes, Some results on random circulant matrices, High dimensional probability V: the Luminy volume, Inst. Math. Stat. (IMS) Collect., vol. 5, Inst. Math. Statist., Beachwood, OH, 2009, pp. 213-223. · Zbl 1243.60008
[29] M. W. Meckes, The spectra of random abelian \(G\)-circulant matrices, ALEA Lat. Am. J. Probab. Math. Stat. 9 (2012), no. 2, 435-450. · Zbl 1277.60017
[30] M. W. Meckes and S. J. Szarek, Concentration for noncommutative polynomials in random matrices, Proc. Amer. Math. Soc. 140 (2012), no. 5, 1803-1813. · Zbl 1250.46046 · doi:10.1090/S0002-9939-2011-11262-0
[31] S. O’Rourke, A note on the Marchenko-Pastur law for a class of random matrices with dependent entries, Electron. Commun. Probab. 17 (2012), no. 28, 13. · Zbl 1251.60006
[32] K. Pastur and M. Shcherbina, Eigenvalue distribution of large random matrices, Mathematical Surveys and Monographs, vol. 171, American Mathematical Society, Providence, RI, 2011. · Zbl 1244.15002
[33] G. Poirot, Mean Green’s function of the Anderson model at weak disorder with an infra-red cut-off, Ann. Inst. H. Poincaré Phys. Théor. 70 (1999), no. 1, 101-146. · Zbl 0920.60092
[34] R. Rashidi F., T. Oraby, W. Bryc, and R. Speicher, On slow-fading MIMO systems with nonseparable correlation, IEEE Trans. Inform. Theory 54 (2008), no. 2, 544-553. · Zbl 1311.94057
[35] J. H. Schenker and H. Schulz-Baldes, Semicircle law and freeness for random matrices with symmetries or correlations, Math. Res. Lett. 12 (2005), no. 4, 531-542. · Zbl 1095.82004
[36] D. Shlyakhtenko, Random Gaussian band matrices and freeness with amalgamation, Internat. Math. Res. Notices (1996), no. 20, 1013-1025. · Zbl 0872.15018 · doi:10.1155/S1073792896000633
[37] G. ’t Hooft, Magnetic monopoles in unified gauge theories, Nuclear Phys. B79 (1974), 276-284.
[38] M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces, Inst. Hautes Études Sci. Publ. Math. (1995), no. 81, 73-205. · Zbl 0864.60013
[39] T. Tao, Topics in random matrix theory, Graduate Studies in Mathematics, vol. 132, American Mathematical Society, Providence, RI, 2012. · Zbl 1256.15020
[40] E. P. Wigner, Characteristic vectors of bordered matrices with infinite dimensions, Ann. of Math. (2) 62 (1955), 548-564. · Zbl 0067.08403 · doi:10.2307/1970079
[41] X. Zhan, Matrix inequalities, Lecture Notes in Mathematics, vol. 1790, Springer-Verlag, Berlin, 2002. · Zbl 1018.15016
[42] W. Zhou, New estimators of spectral distributions of Wigner matrices, J. Math. Phys. 54 (2013), no. 3, 033503, 10. · Zbl 1283.62082 · doi:10.1063/1.4794075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.